Let M be a compact connected complex manifold equipped with a holomorphic submersion to a complex torus such that the fibers are all rationally connected. Then any holomorphic vector bundle over M admitting a holomorphic connection actually admits a flat holomorphic connection. A similar statement is valid for any finite quotient of M.
Soit M une variété complexe compacte connexe, munie d'une submersion holomorphe , où T est un tore complexe, telle que les fibres soient rationnellement connexes. Soit E un fibré vectoriel holomorphe sur M admettant une connexion. Alors E admet une connexion holomorphe plate. Un énoncé similaire vaut pour tout quotient fini de M.
Accepted:
Published online:
Indranil Biswas 1; Jaya N. Iyer 2
@article{CRMATH_2007__344_9_577_0, author = {Indranil Biswas and Jaya N. Iyer}, title = {Holomorphic connections on some complex manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {577--580}, publisher = {Elsevier}, volume = {344}, number = {9}, year = {2007}, doi = {10.1016/j.crma.2007.03.030}, language = {en}, }
Indranil Biswas; Jaya N. Iyer. Holomorphic connections on some complex manifolds. Comptes Rendus. Mathématique, Volume 344 (2007) no. 9, pp. 577-580. doi : 10.1016/j.crma.2007.03.030. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.03.030/
[1] Rational curves on varieties, Budapest, 2001 (Bolyai Soc. Math. Stud.), Volume vol. 12, Springer, Berlin (2003), pp. 13-68
[2] Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc., Volume 85 (1957), pp. 181-207
[3] I. Biswas, T.L. Gómez, Connections and Higgs fields on a principal bundle, Ann. Global Anal. Geom., in press
[4] On twistor spaces of the class , J. Differential Geom., Volume 33 (1991), pp. 541-549
[5] Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom., Volume 3 (1994), pp. 295-345
[6] Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math., Volume 79 (1957), pp. 121-138
[7] Fundamental groups of rationally connected varieties, Michigan Math. J., Volume 48 (2000), pp. 359-368
[8] Rationally connected varieties, J. Algebraic Geom., Volume 1 (1992), pp. 429-448
[9] Rational connectedness and boundedness for Fano manifolds, J. Differential Geom., Volume 36 (1992), pp. 765-779
Cited by Sources:
Comments - Policy