Let be reduced germs of holomorphic functions. We show that f and g have the same multiplicity at 0, if and only if, there exist reduced germs and analytically equivalent to f and g, respectively, such that and satisfy a Rouché type inequality with respect to a generic ‘small’ circle around 0. As an application, we give a reformulation of Zariski's multiplicity question and a partial positive answer to it.
Soient des germes de fonctions holomorphes réduits. Nous montrons que f et g ont la même multiplicité en 0 si et seulement s'il existe des germes réduits et analytiquement équivalents à f et g, respectivement, tels que et satisfassent une inégalité du type de Rouché par rapport à un ‘petit’ cercle générique autour de 0. Comme application, nous donnons une reformulation de la question de Zariski sur la multiplicité et une réponse partielle positive à celle-ci.
Accepted:
Published online:
Christophe Eyral 1; Elizabeth Gasparim 2
@article{CRMATH_2007__344_10_631_0, author = {Christophe Eyral and Elizabeth Gasparim}, title = {Multiplicity of complex hypersurface singularities, {Rouch\'e} satellites and {Zariski's} problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {631--634}, publisher = {Elsevier}, volume = {344}, number = {10}, year = {2007}, doi = {10.1016/j.crma.2007.04.005}, language = {en}, }
TY - JOUR AU - Christophe Eyral AU - Elizabeth Gasparim TI - Multiplicity of complex hypersurface singularities, Rouché satellites and Zariski's problem JO - Comptes Rendus. Mathématique PY - 2007 SP - 631 EP - 634 VL - 344 IS - 10 PB - Elsevier DO - 10.1016/j.crma.2007.04.005 LA - en ID - CRMATH_2007__344_10_631_0 ER -
Christophe Eyral; Elizabeth Gasparim. Multiplicity of complex hypersurface singularities, Rouché satellites and Zariski's problem. Comptes Rendus. Mathématique, Volume 344 (2007) no. 10, pp. 631-634. doi : 10.1016/j.crma.2007.04.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.04.005/
[1] O.M. Abderrahmane, On the deformation with constant Milnor number and Newton polyhedron, Preprint, Saitama University, 2004
[2] preservation of the multiplicity, Duke Math. J., Volume 43 (1976), pp. 797-803
[3] C. Eyral, Zariski's multiplicity question – a survey, Preprint, Max-Planck Institut für Mathematik, 2005
[4] Topological type of isolated critical points, Ann. of Math., Volume 107 (1978), pp. 385-397
[5] Topological type in families of germs, Invent. Math., Volume 62 (1980), pp. 1-13
[6] Polyèdres de Newton et nombres de Milnor, Invent. Math., Volume 32 (1976), pp. 1-32
[7] Complex Analysis, Graduate Texts in Mathematics, vol. 103, Springer–Verlag, 1995
[8] T. Nishimura, A remark on topological types of complex isolated singularities of hypersurfaces, private communication between O. Saeki and T. Nishimura as cited in [11]
[9] Non-Degenerate Complete Intersection Singularity, Actualités Mathématiques, Hermann, Paris, 1997
[10] Conjugaison topologique des germes de fonctions holomorphes à singularité isolée en dimension trois, Invent. Math., Volume 82 (1985), pp. 27-35
[11] Topological types of complex isolated hypersurface singularities, Kodai Math. J., Volume 12 (1989), pp. 23-29
[12] Deformations with constant Milnor number and multiplicity of complex hypersurfaces, Glasg. Math. J., Volume 46 (2004), pp. 121-130
[13] Complex Analytic Varieties, Addison-Wesley Publishing Company, Reading, MA–Menlo Park, CA, 1972
[14] Open questions in the theory of singularities, Bull. Amer. Math. Soc., Volume 77 (1971), pp. 481-491
Cited by Sources:
⁎ This research was supported by the Max-Planck Institut für Mathematik in Bonn.
Comments - Policy