In this Note we develop the fractional space technique in the local operator space framework. As the main result we present the noncommutative Albrecht–Vasilescu extension theorem, which in turn solves the quantized moment problem.
Dans cette Note nous développons la technique des espaces fractionnaires dans le cadre d'espaces d'opérateurs locaux. Le résultat principal est une variante du théorème non commutatif d'Albrecht–Vasilescu sur les extensions, lequel implique une solution du problème du moment quantifié.
Accepted:
Published online:
Anar Dosiev 1
@article{CRMATH_2007__344_10_627_0, author = {Anar Dosiev}, title = {Quantized moment problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {627--630}, publisher = {Elsevier}, volume = {344}, number = {10}, year = {2007}, doi = {10.1016/j.crma.2007.03.022}, language = {en}, }
Anar Dosiev. Quantized moment problem. Comptes Rendus. Mathématique, Volume 344 (2007) no. 10, pp. 627-630. doi : 10.1016/j.crma.2007.03.022. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.03.022/
[1] E. Albrecht, F.-H. Vasilescu, Unbounded extensions and operator moment problems, Preprint, 2004
[2] A.A. Dosiev, The representation theorem for local operator spaces, Funct. Anal. Appl. (2007), in press
[3] Operator analogues of locally convex spaces, Samos, 1996 (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.), Volume vol. 495 (1997)
[4] Operator moment problems in unbounded sets, Operator Theory: Advances and Applications, vol. 127, Birkhäuser, Basel, 2001, pp. 613-638
[5] Spaces of fractions and positive functionals, Math. Scand., Volume 96 (2005), pp. 257-279
[6] F.-H. Vasilescu, Unbounded normal algebras and spaces of fractions, in: Proceedings of Conference “Operator Theory, System Theory and Scattering Theory: Multidimensional Generalizations and Related Topics”, Beer-Sheva, 2005
[7] C. Webster, Local operator spaces and applications, Ph.D. University of California, Los Angeles, 1997
Cited by Sources:
Comments - Policy