By using the right inverse of the Cauchy–Fueter operator we obtain an explicit integral characterization of a class of pseudoconvex domains in .
En utilisant l'inverse à droite de l'opérateur de Cauchy–Fueter, nous démontrons une caractérisation en forme intégrale d'une classe de domaines pseudoconvexes en .
Accepted:
Published online:
Fabrizio Colombo 1; M. Elena Luna-Elizarrarás 2; Irene Sabadini 1; Michael Shapiro 2; Daniele C. Struppa 3
@article{CRMATH_2007__344_11_677_0, author = {Fabrizio Colombo and M. Elena Luna-Elizarrar\'as and Irene Sabadini and Michael Shapiro and Daniele C. Struppa}, title = {A new characterization of a class of pseudoconvex domains in $ {\mathbb{C}}^{2}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {677--680}, publisher = {Elsevier}, volume = {344}, number = {11}, year = {2007}, doi = {10.1016/j.crma.2007.04.014}, language = {en}, }
TY - JOUR AU - Fabrizio Colombo AU - M. Elena Luna-Elizarrarás AU - Irene Sabadini AU - Michael Shapiro AU - Daniele C. Struppa TI - A new characterization of a class of pseudoconvex domains in $ {\mathbb{C}}^{2}$ JO - Comptes Rendus. Mathématique PY - 2007 SP - 677 EP - 680 VL - 344 IS - 11 PB - Elsevier DO - 10.1016/j.crma.2007.04.014 LA - en ID - CRMATH_2007__344_11_677_0 ER -
%0 Journal Article %A Fabrizio Colombo %A M. Elena Luna-Elizarrarás %A Irene Sabadini %A Michael Shapiro %A Daniele C. Struppa %T A new characterization of a class of pseudoconvex domains in $ {\mathbb{C}}^{2}$ %J Comptes Rendus. Mathématique %D 2007 %P 677-680 %V 344 %N 11 %I Elsevier %R 10.1016/j.crma.2007.04.014 %G en %F CRMATH_2007__344_11_677_0
Fabrizio Colombo; M. Elena Luna-Elizarrarás; Irene Sabadini; Michael Shapiro; Daniele C. Struppa. A new characterization of a class of pseudoconvex domains in $ {\mathbb{C}}^{2}$. Comptes Rendus. Mathématique, Volume 344 (2007) no. 11, pp. 677-680. doi : 10.1016/j.crma.2007.04.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.04.014/
[1] Analysis of Dirac Systems and Computational Algebra, Progress in Mathematical Physics, vol. 39, Birkhäuser, Boston, 2004
[2] Über einen Hartogs'schen Satz, Comm. Math. Helv., Volume 12 (1939), pp. 75-80
[3] Function Theory of Several Complex Variables, John Wiley & Sons, New York, 1982
[4] Differentiation of the Martinelli–Bochner integrals and the notion of hyperderivability, Math. Nachr., Volume 172 (1995), pp. 211-238
[5] Characterization of domains of holomorphy by the existence of hyper-conjugate harmonic functions, Rev. Roum. Math. Pures Appl., Volume 31 (1986), pp. 159-161
[6] Complex Clifford analysis and domains of holomorphy, J. Austral. Math. Soc. Ser. A, Volume 48 (1990), pp. 413-433
[7] On the Bergman kernel function in hypercomplex analysis, Acta Appl. Math., Volume 46 (1997), pp. 1-27
Cited by Sources:
Comments - Policy