Let Γ be a non-elementary subgroup of . If is a probability measure on which is Γ-invariant, then is a convex combination of the Haar measure and an atomic probability measure supported by rational points. The same conclusion holds under the weaker assumption that is ν-stationary, i.e. , where is a finitely supported, probability measure on Γ whose support suppν generates Γ. The approach works more generally for .
Soit Γ un sous-groupe non-élementaire du groupe . Soit une mesure de probabilité Γ-invariante sur le tore . On démontre que est une moyenne de la mesure de Haar et une probabilité discrète portée par des points rationnels. La même conclusion reste vraie sous l'hypothèse que est ν-stationnaire, donc , où est une probabilité sur Γ à support fini et engendrant Γ. L'approche se généralise aux sous-groupes Γ de .
Accepted:
Published online:
Jean Bourgain 1; Alex Furman 2; Elon Lindenstrauss 3; Shahar Mozes 4
@article{CRMATH_2007__344_12_737_0, author = {Jean Bourgain and Alex Furman and Elon Lindenstrauss and Shahar Mozes}, title = {Invariant measures and stiffness for {non-Abelian} groups of toral automorphisms}, journal = {Comptes Rendus. Math\'ematique}, pages = {737--742}, publisher = {Elsevier}, volume = {344}, number = {12}, year = {2007}, doi = {10.1016/j.crma.2007.04.017}, language = {en}, }
TY - JOUR AU - Jean Bourgain AU - Alex Furman AU - Elon Lindenstrauss AU - Shahar Mozes TI - Invariant measures and stiffness for non-Abelian groups of toral automorphisms JO - Comptes Rendus. Mathématique PY - 2007 SP - 737 EP - 742 VL - 344 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2007.04.017 LA - en ID - CRMATH_2007__344_12_737_0 ER -
%0 Journal Article %A Jean Bourgain %A Alex Furman %A Elon Lindenstrauss %A Shahar Mozes %T Invariant measures and stiffness for non-Abelian groups of toral automorphisms %J Comptes Rendus. Mathématique %D 2007 %P 737-742 %V 344 %N 12 %I Elsevier %R 10.1016/j.crma.2007.04.017 %G en %F CRMATH_2007__344_12_737_0
Jean Bourgain; Alex Furman; Elon Lindenstrauss; Shahar Mozes. Invariant measures and stiffness for non-Abelian groups of toral automorphisms. Comptes Rendus. Mathématique, Volume 344 (2007) no. 12, pp. 737-742. doi : 10.1016/j.crma.2007.04.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.04.017/
[1] Multi-invariant sets on tori, Trans. Amer. Math. Soc., Volume 280 (2000) no. 2, pp. 509-532
[2] Products of Random Matrices with Applications to Schrödinger Operators, Birkhäuser, 1985
[3] On the Erdös–Volkmann and Katz–Tao ring conjecture, GAFA, Volume 13 (2003), pp. 334-365
[4] J. Bourgain, A. Gamburd, On the spectral gap for finitely-generated subgroups of , preprint, Invent., submitted for publication
[5] Rigidity properties of -actions on tori and solenoids, Electron. Res. Announc. Amer. Math. Soc., Volume 9 (2003), pp. 99-110
[6] Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, Volume 1 (1967), pp. 1-49
[7] Stiffness of group actions, Mumbai, 1996 (Tata Inst. Fund. Res. Stud. Math.), Volume vol. 14, Tata Inst. Fund. Res., Bombay (1998), pp. 105-117
[8] Lyapunov exponents of a product of random matrices, Uspekhi Mat. Nauk, Volume 44 (1989) no. 5(269), pp. 13-60 (in Russian). Translation in Russian Math. Surveys, 44, 5, 1989, pp. 11-71
[9] Y. Guivarc'h, private communication
[10] Orbits of linear group actions, random walk on homogeneous spaces, and toral automorphisms, Ergodic Theory Dynam. Systems, Volume 24 (2004) no. 3, pp. 767-802
[11] Invariant measures for actions of higher rank abelian groups, Seattle, WA, 1999 (Proc. Sympos. Pure Math.), Volume vol. 69, Amer. Math. Soc. Providence, RI (2001), pp. 593-637
[12] Invariant measures for higher rank hyperbolic abelian actions, Ergodic Theory Dynam. Systems, Volume 16 (1996) no. 4, pp. 751-778
[13] Some connections between Falconer's distance set conjecture and sets of Furstenberg type, New York J. Math., Volume 7 (2001), pp. 149-187
[14] Problems and conjectures in rigidity theory, Mathematics: Frontiers and Perspectives, Amer. Math. Soc., 2000, pp. 161-174
[15] R. Muchnik, Orbits of Zariski dense semigroups of , Ergodic Theory Dynam. Systems
[16] Semigroup actions on , Geom. Dedicata, Volume 110 (2005), pp. 1-47
[17] Strong approximation for Zariski dense subgroups over arbitrary global fields, Comment. Math. Helv., Volume 75 (2000) no. 4, pp. 608-643
[18] ×2 and ×3 invariant measures and entropy, Ergodic Theory Dynam. Systems, Volume 10 (1990) no. 2, pp. 395-406
[19] A.N. Starkov, Orbit closures of toral automorphism groups, preprint, Moscow, 1999
[20] Strong approximation for Zariski-dense subgroups of semisimple algebraic groups, Ann. of Math. (2), Volume 120 (1984) no. 2, pp. 271-315
Cited by Sources:
⁎ This research is supported in part by NSF DMS grants 0627882 (JB), 0604611 (AF), 0500205 & 0554345 (EL) and BSF grant 2004-010 (SM).
Comments - Politique