We prove that the Hankel operator associated to the Szegö projection on the unit ball is bounded on the Hardy space if and only if its symbol b has logarithmic mean oscillation on the unit sphere.
On démontre que l'opérateur de Hankel associé au projecteur de Szegö sur la boule unité s'étend continûment à l'espace de Hardy si et seulement si b est à oscillation moyenne logarithmique sur la sphère unité.
Accepted:
Published online:
Aline Bonami 1; Sandrine Grellier 1; Benoît F. Sehba 2
@article{CRMATH_2007__344_12_749_0, author = {Aline Bonami and Sandrine Grellier and Beno{\^\i}t F. Sehba}, title = {Boundedness of {Hankel} operators on $ {\mathcal{H}}^{1}({\mathbb{B}}^{n})$}, journal = {Comptes Rendus. Math\'ematique}, pages = {749--752}, publisher = {Elsevier}, volume = {344}, number = {12}, year = {2007}, doi = {10.1016/j.crma.2007.05.004}, language = {en}, }
TY - JOUR AU - Aline Bonami AU - Sandrine Grellier AU - Benoît F. Sehba TI - Boundedness of Hankel operators on $ {\mathcal{H}}^{1}({\mathbb{B}}^{n})$ JO - Comptes Rendus. Mathématique PY - 2007 SP - 749 EP - 752 VL - 344 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2007.05.004 LA - en ID - CRMATH_2007__344_12_749_0 ER -
Aline Bonami; Sandrine Grellier; Benoît F. Sehba. Boundedness of Hankel operators on $ {\mathcal{H}}^{1}({\mathbb{B}}^{n})$. Comptes Rendus. Mathématique, Volume 344 (2007) no. 12, pp. 749-752. doi : 10.1016/j.crma.2007.05.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.004/
[1] A. Bonami, S. Grellier, Decomposition theorems for Hardy–Orlicz spaces and weak factorization, Preprint, 2007
[2] Factorization of Hardy spaces and Hankel operators on convex domains in , J. Geom. Anal., Volume 11 (2001) no. 3, pp. 363-397
[3] On the action of Hankel and Toeplitz operators on some function spaces, Duke Math. J., Volume 51 (1984) no. 4, pp. 937-958
[4] Function Theory in the Unit Ball of , Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Science, vol. 241, Springer-Verlag, New York–Berlin, 1980 (xiii+436 pp) (ISBN: 0-387-90514-6)
[5] and Carleson measures, Trans. Amer. Math. Soc., Volume 287 (1985) no. 1, pp. 107-126
[6] Hankel and Toeplitz operators in Hardy spaces, Soviet Math., Volume 37 (1987), pp. 1359-1364
[7] On logarithmic Carleson measures, Acta Sci. Math. (Szeged), Volume 69 (2003), pp. 605-618
Cited by Sources:
Comments - Policy