Comptes Rendus
Algebraic Geometry
Coniveau over p-adic fields and points over finite fields
Comptes Rendus. Mathématique, Volume 345 (2007) no. 2, pp. 73-76.

If the -adic cohomology of a projective smooth variety, defined over a p-adic field K with finite residue field k, is supported in codimension ⩾1, then any model over the ring of integers of K has a k-rational point.

Si la cohomologie -adique d'une variété projective, lisse, définie sur un corps p-adique K à corps residuel fini k, est supportée en codimension ⩾1, alors tout modèle sur l'anneau des entiers de K a un point rationnel.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.05.017

Hélène Esnault 1

1 Universität Duisburg-Essen, Mathematik, 45117 Essen, Germany
@article{CRMATH_2007__345_2_73_0,
     author = {H\'el\`ene Esnault},
     title = {Coniveau over $ \mathfrak{p}$-adic fields and points over finite fields},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {73--76},
     publisher = {Elsevier},
     volume = {345},
     number = {2},
     year = {2007},
     doi = {10.1016/j.crma.2007.05.017},
     language = {en},
}
TY  - JOUR
AU  - Hélène Esnault
TI  - Coniveau over $ \mathfrak{p}$-adic fields and points over finite fields
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 73
EP  - 76
VL  - 345
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2007.05.017
LA  - en
ID  - CRMATH_2007__345_2_73_0
ER  - 
%0 Journal Article
%A Hélène Esnault
%T Coniveau over $ \mathfrak{p}$-adic fields and points over finite fields
%J Comptes Rendus. Mathématique
%D 2007
%P 73-76
%V 345
%N 2
%I Elsevier
%R 10.1016/j.crma.2007.05.017
%G en
%F CRMATH_2007__345_2_73_0
Hélène Esnault. Coniveau over $ \mathfrak{p}$-adic fields and points over finite fields. Comptes Rendus. Mathématique, Volume 345 (2007) no. 2, pp. 73-76. doi : 10.1016/j.crma.2007.05.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.017/

[1] A.J. de Jong Families of curves and alterations, Ann. Inst. Fourier, Volume 47 (1997) no. 2, pp. 599-621

[2] P. Deligne La conjecture de Weil, II, Publ. Math. IHES, Volume 52 (1981), pp. 137-252

[3] H. Esnault Deligne's integrality theorem in unequal characteristic and rational points over finite fields, with an appendix with P. Deligne, Ann. Math., Volume 164 (2006), pp. 715-730

[4] K. Fujiwara A proof of the absolute purity conjecture (after Gabber), Azumino (Advanced Studies in Pure Mathematics), Volume vol. 36, Mathematical Society of Japan (2002), pp. 153-183

Cited by Sources:

Comments - Policy