If the ℓ-adic cohomology of a projective smooth variety, defined over a -adic field K with finite residue field k, is supported in codimension ⩾1, then any model over the ring of integers of K has a k-rational point.
Si la cohomologie ℓ-adique d'une variété projective, lisse, définie sur un corps -adique K à corps residuel fini k, est supportée en codimension ⩾1, alors tout modèle sur l'anneau des entiers de K a un point rationnel.
Accepted:
Published online:
Hélène Esnault 1
@article{CRMATH_2007__345_2_73_0, author = {H\'el\`ene Esnault}, title = {Coniveau over $ \mathfrak{p}$-adic fields and points over finite fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {73--76}, publisher = {Elsevier}, volume = {345}, number = {2}, year = {2007}, doi = {10.1016/j.crma.2007.05.017}, language = {en}, }
Hélène Esnault. Coniveau over $ \mathfrak{p}$-adic fields and points over finite fields. Comptes Rendus. Mathématique, Volume 345 (2007) no. 2, pp. 73-76. doi : 10.1016/j.crma.2007.05.017. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.017/
[1] Families of curves and alterations, Ann. Inst. Fourier, Volume 47 (1997) no. 2, pp. 599-621
[2] La conjecture de Weil, II, Publ. Math. IHES, Volume 52 (1981), pp. 137-252
[3] Deligne's integrality theorem in unequal characteristic and rational points over finite fields, with an appendix with P. Deligne, Ann. Math., Volume 164 (2006), pp. 715-730
[4] A proof of the absolute purity conjecture (after Gabber), Azumino (Advanced Studies in Pure Mathematics), Volume vol. 36, Mathematical Society of Japan (2002), pp. 153-183
Cited by Sources:
Comments - Policy