Comptes Rendus
Algebraic Geometry
Construction of Galois covers of curves with groups of SL2-type
Comptes Rendus. Mathématique, Volume 345 (2007) no. 2, pp. 77-80.

We give a construction of étale Galois covers of algebraic curves over a field of positive characteristic with a prescribed system of finite groups of SL2-type.

On donne une construction de rêvetements Galoisiens étales de courbes algébriques définies sur un corps de caractéristique positive avec un système prescrit de groupes finis d'un SL2-type.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.05.027

Chia-Fu Yu 1, 2

1 Institute of Mathematics, Academia Sinica, 128, Academia Rd. Sec. 2, Nankang, Taipei, Taiwan
2 Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
@article{CRMATH_2007__345_2_77_0,
     author = {Chia-Fu Yu},
     title = {Construction of {Galois} covers of curves with groups of {SL\protect\textsubscript{2}-type}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {77--80},
     publisher = {Elsevier},
     volume = {345},
     number = {2},
     year = {2007},
     doi = {10.1016/j.crma.2007.05.027},
     language = {en},
}
TY  - JOUR
AU  - Chia-Fu Yu
TI  - Construction of Galois covers of curves with groups of SL2-type
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 77
EP  - 80
VL  - 345
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2007.05.027
LA  - en
ID  - CRMATH_2007__345_2_77_0
ER  - 
%0 Journal Article
%A Chia-Fu Yu
%T Construction of Galois covers of curves with groups of SL2-type
%J Comptes Rendus. Mathématique
%D 2007
%P 77-80
%V 345
%N 2
%I Elsevier
%R 10.1016/j.crma.2007.05.027
%G en
%F CRMATH_2007__345_2_77_0
Chia-Fu Yu. Construction of Galois covers of curves with groups of SL2-type. Comptes Rendus. Mathématique, Volume 345 (2007) no. 2, pp. 77-80. doi : 10.1016/j.crma.2007.05.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.027/

[1] C.-L. Chai Monodromy of Hecke-invariant subvarieties. Special issue in memory of A. Borel, Pure Appl. Math. Q., Volume 1 (2005), pp. 291-303

[2] P. Deligne La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math., Volume 52 (1980), pp. 137-252

[3] T. Ekedahl An effective version of Hilbert's irreducibility theorem, Paris 1988–1989 (Progr. Math.), Volume vol. 91, Birkhäuser Boston (1990), pp. 241-249

[4] Y. Ihara Shimura curves over finite fields and their rational points, Seattle, WA, 1997 (Contemp. Math.), Volume vol. 245 (1999), pp. 15-23

[5] M. Rapoport Compactifications de l'espaces de modules de Hilbert–Blumenthal, Compositio Math., Volume 36 (1978), pp. 255-335

[6] K. Stevenson Galois groups of unramified covers of projective curves in characteristic p, J. Algebra, Volume 182 (1996), pp. 770-804

[7] C.-F. Yu, Irreducibility of the Hilbert–Blumenthal moduli spaces with parahoric level structure, MPIM Preprint 2007 – 37, 21 pp

Cited by Sources:

The research is partially supported by NSC 96-2115-M-001-001.

Comments - Policy