[Version non adaptée du principe d'invariance de Peligrad et Utev]
Nous présentons une version non adaptée du principe d'invariance de Peligrad et Utev [M. Peligrad, S. Utev, A new maximal inequality and invariance principle for stationary sequences, Ann. Probab. 33 (2005) 798–815].
We present a nonadapted version of the invariance principle of Peligrad and Utev [M. Peligrad, S. Utev, A new maximal inequality and invariance principle for stationary sequences, Ann. Probab. 33 (2005) 798–815].
Accepté le :
Publié le :
Dalibor Volný 1
@article{CRMATH_2007__345_3_167_0, author = {Dalibor Voln\'y}, title = {A nonadapted version of the invariance principle of {Peligrad} and {Utev}}, journal = {Comptes Rendus. Math\'ematique}, pages = {167--169}, publisher = {Elsevier}, volume = {345}, number = {3}, year = {2007}, doi = {10.1016/j.crma.2007.05.024}, language = {en}, }
Dalibor Volný. A nonadapted version of the invariance principle of Peligrad and Utev. Comptes Rendus. Mathématique, Volume 345 (2007) no. 3, pp. 167-169. doi : 10.1016/j.crma.2007.05.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.024/
[1] Convergence of Probability Measures, John Wiley & Sons Inc., New York, 1968
[2] Ergodic Theory, Die Grundlehren der Mathematischen Wissenschaften, vol. 245, Springer, Berlin, 1982
[3] Martingale Limit Theory and its Application, Academic Press, New York, 1980
[4] J. Klicnarová, D. Volný, An invariance principle for non adapted processes C. R. Acad. Sci. Paris, Ser. I, , 2007, in press | DOI
[5] Central limit theorems for additive functionals of Markov chains, Ann. Probab., Volume 28 (2000), pp. 713-724
[6] A new maximal inequality and invariance principle for stationary sequences, Ann. Probab., Volume 33 (2005), pp. 798-815
[7] A maximal -inequality for stationary sequences and applications, Proc. Amer. Math. Soc., Volume 135 (2007), pp. 541-550
[8] M. Tyran-Kamińska, M. Mackey, Central limit theorem for non-invertible measure preserving maps, Colloquium Mathematicum (2007), in press
[9] On the invariance principle and functional law of iterated logarithm for nonergodic processes, Yokohama Math. J., Volume 35 (1987), pp. 137-141
[10] Martingale approximation of non adapted stochastic processes with nonlinear growth of variance (P. Bertail; P. Doukhan; P. Soulier, eds.), Dependence in Probability and Statistics Series, Lecture Notes in Statistics, vol. 187, 2006
Cité par Sources :
Commentaires - Politique