[Version non adaptée du principe d'invariance de Peligrad et Utev]
Nous présentons une version non adaptée du principe d'invariance de Peligrad et Utev [M. Peligrad, S. Utev, A new maximal inequality and invariance principle for stationary sequences, Ann. Probab. 33 (2005) 798–815].
We present a nonadapted version of the invariance principle of Peligrad and Utev [M. Peligrad, S. Utev, A new maximal inequality and invariance principle for stationary sequences, Ann. Probab. 33 (2005) 798–815].
Accepté le :
Publié le :
Dalibor Volný 1
@article{CRMATH_2007__345_3_167_0, author = {Dalibor Voln\'y}, title = {A nonadapted version of the invariance principle of {Peligrad} and {Utev}}, journal = {Comptes Rendus. Math\'ematique}, pages = {167--169}, publisher = {Elsevier}, volume = {345}, number = {3}, year = {2007}, doi = {10.1016/j.crma.2007.05.024}, language = {en}, }
Dalibor Volný. A nonadapted version of the invariance principle of Peligrad and Utev. Comptes Rendus. Mathématique, Volume 345 (2007) no. 3, pp. 167-169. doi : 10.1016/j.crma.2007.05.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.024/
[1] Convergence of Probability Measures, John Wiley & Sons Inc., New York, 1968
[2] Ergodic Theory, Die Grundlehren der Mathematischen Wissenschaften, vol. 245, Springer, Berlin, 1982
[3] Martingale Limit Theory and its Application, Academic Press, New York, 1980
[4] J. Klicnarová, D. Volný, An invariance principle for non adapted processes C. R. Acad. Sci. Paris, Ser. I, , 2007, in press | DOI
[5] Central limit theorems for additive functionals of Markov chains, Ann. Probab., Volume 28 (2000), pp. 713-724
[6] A new maximal inequality and invariance principle for stationary sequences, Ann. Probab., Volume 33 (2005), pp. 798-815
[7] A maximal
[8] M. Tyran-Kamińska, M. Mackey, Central limit theorem for non-invertible measure preserving maps, Colloquium Mathematicum (2007), in press
[9] On the invariance principle and functional law of iterated logarithm for nonergodic processes, Yokohama Math. J., Volume 35 (1987), pp. 137-141
[10] Martingale approximation of non adapted stochastic processes with nonlinear growth of variance (P. Bertail; P. Doukhan; P. Soulier, eds.), Dependence in Probability and Statistics Series, Lecture Notes in Statistics, vol. 187, 2006
- Martingale approximations and anisotropic Banach spaces with an application to the time-one map of a Lorentz gas, Nonlinearity, Volume 33 (2020) no. 8, p. 4095 | DOI:10.1088/1361-6544/ab7d22
- Hölderian weak invariance principle under the Maxwell and Woodroofe condition, Brazilian Journal of Probability and Statistics, Volume 32 (2018) no. 1 | DOI:10.1214/16-bjps336
- Invariance principle via orthomartingale approximation, Stochastics and Dynamics, Volume 18 (2018) no. 06, p. 1850043 | DOI:10.1142/s0219493718500430
- Quenched Invariance Principles via Martingale Approximation, Asymptotic Laws and Methods in Stochastics, Volume 76 (2015), p. 149 | DOI:10.1007/978-1-4939-3076-0_9
- On Zhao-Woodroofe's condition for martingale approximation, Electronic Communications in Probability, Volume 18 (2013) no. none | DOI:10.1214/ecp.v18-2780
- Almost sure invariance principles via martingale approximation, Stochastic Processes and their Applications, Volume 122 (2012) no. 1, p. 170 | DOI:10.1016/j.spa.2011.09.004
- Moderate deviations for stationary sequences of Hilbert-valued bounded random variables, Journal of Mathematical Analysis and Applications, Volume 349 (2009) no. 2, p. 374 | DOI:10.1016/j.jmaa.2008.08.050
- On the exactness of the Wu–Woodroofe approximation, Stochastic Processes and their Applications, Volume 119 (2009) no. 7, p. 2158 | DOI:10.1016/j.spa.2008.10.006
Cité par 8 documents. Sources : Crossref
Commentaires - Politique