Comptes Rendus
Differential Geometry
Critical points of the acceleration in CP2(4)
Comptes Rendus. Mathématique, Volume 345 (2007) no. 3, pp. 161-166.

We study the variational problem associated to the L2 norm of the angular acceleration for curve variations of constant length. We determine the unit speed closed critical curves with constant slant in CP2(4).

Nous étudions le problème variationnel associé à la norme L2 de l'accélération angulaire pour des variations de courbe de longueur constante. Nous déterminons les courbes critiques fermées paramétrées par des abscisses curvilignes à pente constante en CP2(4).

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.06.015

Josu Arroyo 1; Óscar J. Garay 1; José J. Mencía 1

1 Dpto. de Matemáticas, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Aptdo 644, 48080 Bilbao, Spain
@article{CRMATH_2007__345_3_161_0,
     author = {Josu Arroyo and \'Oscar J. Garay and Jos\'e J. Menc{\'\i}a},
     title = {Critical points of the acceleration in $ {\mathbb{CP}}^{2}(4)$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {161--166},
     publisher = {Elsevier},
     volume = {345},
     number = {3},
     year = {2007},
     doi = {10.1016/j.crma.2007.06.015},
     language = {en},
}
TY  - JOUR
AU  - Josu Arroyo
AU  - Óscar J. Garay
AU  - José J. Mencía
TI  - Critical points of the acceleration in $ {\mathbb{CP}}^{2}(4)$
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 161
EP  - 166
VL  - 345
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2007.06.015
LA  - en
ID  - CRMATH_2007__345_3_161_0
ER  - 
%0 Journal Article
%A Josu Arroyo
%A Óscar J. Garay
%A José J. Mencía
%T Critical points of the acceleration in $ {\mathbb{CP}}^{2}(4)$
%J Comptes Rendus. Mathématique
%D 2007
%P 161-166
%V 345
%N 3
%I Elsevier
%R 10.1016/j.crma.2007.06.015
%G en
%F CRMATH_2007__345_3_161_0
Josu Arroyo; Óscar J. Garay; José J. Mencía. Critical points of the acceleration in $ {\mathbb{CP}}^{2}(4)$. Comptes Rendus. Mathématique, Volume 345 (2007) no. 3, pp. 161-166. doi : 10.1016/j.crma.2007.06.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.06.015/

[1] J. Arroyo, O.J. Garay, J.J. Mencía, Unit speed stationary points of the acceleration, Preprint

[2] M. Barros; O.J. Garay; D.A. Singer Elasticae with constant slant in the complex projective plane and new examples of Willmore tori in five spheres, Tohoku Math. J., Volume 51 (1999), pp. 177-192

[3] M. Camarinha; F. Silva Leite; P. Crouch On the geometry of Riemannian cubic polynomials, Diferential Geom. Appl., Volume 15 (2001), pp. 107-135

[4] V.V. Nesterenko; A. Feoli; G. Scarpetta Dynamics of relativistic particle with Lagrangian dependent on acceleration, J. Math. Phys., Volume 6 (1989), pp. 465-473

[5] L. Noakes; G. Heinzinger; B. Paden Cubic splines on curved spaces, IMA J. Math. Control Inform., Volume 12 (1995), pp. 399-410

[6] L. Noakes; T. Popiel Null Riemannian cubics in tension, IMA J. Math. Control Inform., Volume 22 (2005), pp. 477-488

Cited by Sources:

Comments - Policy