We study the variational problem associated to the norm of the angular acceleration for curve variations of constant length. We determine the unit speed closed critical curves with constant slant in .
Nous étudions le problème variationnel associé à la norme de l'accélération angulaire pour des variations de courbe de longueur constante. Nous déterminons les courbes critiques fermées paramétrées par des abscisses curvilignes à pente constante en .
Accepted:
Published online:
Josu Arroyo 1; Óscar J. Garay 1; José J. Mencía 1
@article{CRMATH_2007__345_3_161_0, author = {Josu Arroyo and \'Oscar J. Garay and Jos\'e J. Menc{\'\i}a}, title = {Critical points of the acceleration in $ {\mathbb{CP}}^{2}(4)$}, journal = {Comptes Rendus. Math\'ematique}, pages = {161--166}, publisher = {Elsevier}, volume = {345}, number = {3}, year = {2007}, doi = {10.1016/j.crma.2007.06.015}, language = {en}, }
TY - JOUR AU - Josu Arroyo AU - Óscar J. Garay AU - José J. Mencía TI - Critical points of the acceleration in $ {\mathbb{CP}}^{2}(4)$ JO - Comptes Rendus. Mathématique PY - 2007 SP - 161 EP - 166 VL - 345 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2007.06.015 LA - en ID - CRMATH_2007__345_3_161_0 ER -
Josu Arroyo; Óscar J. Garay; José J. Mencía. Critical points of the acceleration in $ {\mathbb{CP}}^{2}(4)$. Comptes Rendus. Mathématique, Volume 345 (2007) no. 3, pp. 161-166. doi : 10.1016/j.crma.2007.06.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.06.015/
[1] J. Arroyo, O.J. Garay, J.J. Mencía, Unit speed stationary points of the acceleration, Preprint
[2] Elasticae with constant slant in the complex projective plane and new examples of Willmore tori in five spheres, Tohoku Math. J., Volume 51 (1999), pp. 177-192
[3] On the geometry of Riemannian cubic polynomials, Diferential Geom. Appl., Volume 15 (2001), pp. 107-135
[4] Dynamics of relativistic particle with Lagrangian dependent on acceleration, J. Math. Phys., Volume 6 (1989), pp. 465-473
[5] Cubic splines on curved spaces, IMA J. Math. Control Inform., Volume 12 (1995), pp. 399-410
[6] Null Riemannian cubics in tension, IMA J. Math. Control Inform., Volume 22 (2005), pp. 477-488
Cited by Sources:
Comments - Policy