A finitely generated structure is said to be QFA (for quasi-finitely axiomatizable, see [A. Nies, Separating classes of groups by first order sentences, Internat. J. Algebra Comput. 13 (2003) 287–302]) if there exists a first order sentence satisfied by S such that every finitely generated structure satisfying it is isomorphic to S. We prove that every structure which is bi-interprétable with the ring of integers is QFA and prime. We apply this result on the one hand to some metabelian groups and on the other, to commutative rings.
Une structure S de type fini est dite QFA (pour quasi finiment axiomatisable, voir [A. Nies, Separating classes of groups by first order sentences, Internat. J. Algebra Comput. 13 (2003) 287–302]) s'il existe un énoncé du premier ordre satisfait par S telle que toute structure de type fini qui la satisfait est isomorphe à S. Nous montrons que toute structure bi-interprétable avec l'anneau des entiers est QFA et première. Nous appliquons ce résultat d'une part à certains groupes métabéliens et d'autre part aux anneaux commutatifs.
Accepted:
Published online:
Anatole Khelif 1
@article{CRMATH_2007__345_2_59_0, author = {Anatole Khelif}, title = {Bi-interpr\'etabilit\'e et structures {QFA} : \'etude de groupes r\'esolubles et des anneaux commutatifs}, journal = {Comptes Rendus. Math\'ematique}, pages = {59--61}, publisher = {Elsevier}, volume = {345}, number = {2}, year = {2007}, doi = {10.1016/j.crma.2007.06.003}, language = {fr}, }
Anatole Khelif. Bi-interprétabilité et structures QFA : étude de groupes résolubles et des anneaux commutatifs. Comptes Rendus. Mathématique, Volume 345 (2007) no. 2, pp. 59-61. doi : 10.1016/j.crma.2007.06.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.06.003/
[1] Model theory of unitriangular groups, Amer. Math. Soc. Transl., vol. 195, 1999, pp. 1-116
[2] Model Theory, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1993
[3] Separating classes of groups by first order sentences, Internat. J. Algebra Comput., Volume 13 (2003), pp. 287-302
[4] A. Nies, Describing groups, Bull. Symb. Logic, à paraître
[5] F. Oger, Some new examples of quasi-finitely axiomatizable groups which are prime models, Preprint
[6] On some elementary properties of soluble groups of derived length 2, Sib. Math. J., Volume 44 (2003) no. 2, pp. 350-354
[7] T. Scanlon, Infinite finitely generated fields are biinterpretable with N, Preprint
Cited by Sources:
Comments - Policy