In this Note we study solutions of the equation on the entire Euclidean space , with . We prove the non-existence of stable solutions for . In the two-dimensional case we also demonstrate a classification theorem for solutions which are stable outside a compact set.
Cette Note porte sur l'étude des solutions de l'équation dans , . Nous démontrons la non-existence de solutions stables en dimension . En dimension , nous prouvons aussi un théorème de classification pour les solutions stables à l'extérieur d'un compact.
Published online:
Alberto Farina 1
@article{CRMATH_2007__345_2_63_0, author = {Alberto Farina}, title = {Stable solutions of $ -\mathrm{\Delta }u={\mathrm{e}}^{u}$ on $ {\mathbb{R}}^{N}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {63--66}, publisher = {Elsevier}, volume = {345}, number = {2}, year = {2007}, doi = {10.1016/j.crma.2007.05.021}, language = {en}, }
Alberto Farina. Stable solutions of $ -\mathrm{\Delta }u={\mathrm{e}}^{u}$ on $ {\mathbb{R}}^{N}$. Comptes Rendus. Mathématique, Volume 345 (2007) no. 2, pp. 63-66. doi : 10.1016/j.crma.2007.05.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.021/
[1] Entire solutions of semilinear elliptic equations in and a conjecture of De Giorgi, J. Amer. Math. Soc., Volume 13 (2000) no. 4, pp. 725-739
[2] Solutions of superlinear elliptic equations and their Morse indices, Comm. Pure Appl. Math., Volume 45 (1992) no. 9, pp. 1205-1215
[3] Uniform estimates and blow-up behavior for solutions of in two dimensions, Comm. Partial Differential Equations, Volume 16 (1991), pp. 1223-1253
[4] An Introduction to the Study of Stellar Structure, Dover Publications, Inc., New York, 1957
[5] Classification of solutions of some nonlinear elliptic equations, Duke Math. J., Volume 63 (1991), pp. 615-622
[6] Stable solutions on and the primary branch of some non-self-adjoint convex problems, Differential Integral Equations, 17 (2004), pp. 961-970
[7] E.N. Dancer, Finite Morse index solutions of exponential problems, preprint
[8] Convergence problems for functionals and operators, Rome, 1978, Pitagora, Bologna (1979), pp. 131-188
[9] L. Dupaigne, Personal communication
[10] Gaskugeln, Anwendungen der mechanischen Warmetheorie auf kosmologische und meteorologische Probleme, Teubner-Verlag, Leipzig, 1907
[11] Liouville-type results for solutions of on unbounded domains of , C. R. Acad. Sci. Paris, Ser. I, Volume 341 (2005) no. 7, pp. 415-418
[12] On the classification of solutions of the Lane–Emden equation on unbounded domains of , J. Math. Pures Appl., Volume 87 (2007) no. 5, pp. 537-561
[13] A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, Volume 6 (1981) no. 8, pp. 883-901
[14] Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., Volume 49 (1972/73), pp. 241-269
Cited by Sources:
Comments - Policy