We present a new variant of a domain decomposition method with complete overlap and not necessarily nested grids to solve numerically elliptic problems with multi-scale data. The novelty of the method consists in restricting finite element functions on the coarse grid to be approximately harmonic inside the subdomain where a finer triangulation is applied. Numerical experiments confirm an increase in the convergence rate over a previously proposed method.
Nous présentons une nouvelle variante de la méthode de décomposition de domaines avec un recouvrement complet et des maillages non nécessairement emboîtés pour la résolution numérique des problèmes elliptiques avec des données multi-échelle. La nouveauté de la méthode consiste dans la restriction de l'espace des fonctions éléments finis grossières à être des approximations des fonctions harmoniques dans le sous-domaine sur lequel une triangulation fine est appliquée. Des expériences numériques confirment une augmentation du taux de convergence par rapport à une méthode proposée précédemment.
Accepted:
Published online:
Jiwen He 1; Alexei Lozinski 1; Jacques Rappaz 2
@article{CRMATH_2007__345_2_107_0, author = {Jiwen He and Alexei Lozinski and Jacques Rappaz}, title = {Accelerating the method of finite element patches using approximately harmonic functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {107--112}, publisher = {Elsevier}, volume = {345}, number = {2}, year = {2007}, doi = {10.1016/j.crma.2007.06.006}, language = {en}, }
TY - JOUR AU - Jiwen He AU - Alexei Lozinski AU - Jacques Rappaz TI - Accelerating the method of finite element patches using approximately harmonic functions JO - Comptes Rendus. Mathématique PY - 2007 SP - 107 EP - 112 VL - 345 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2007.06.006 LA - en ID - CRMATH_2007__345_2_107_0 ER -
Jiwen He; Alexei Lozinski; Jacques Rappaz. Accelerating the method of finite element patches using approximately harmonic functions. Comptes Rendus. Mathématique, Volume 345 (2007) no. 2, pp. 107-112. doi : 10.1016/j.crma.2007.06.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.06.006/
[1] Analysis of a chimera method, C. R. Acad. Sci. Paris, Ser. I, Volume 332 (2003), pp. 655-660
[2] Finite element approximation of multi-scale elliptic problems using patches of elements, Numer. Math., Volume 101 (2005) no. 4, pp. 663-687
[3] Approximation of multi-scale elliptic problems using patches of finite elements, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 679-684
[4] J. He, A. Lozinski, J. Rappaz, Some results on the method of finite element patches, Technical report, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 2007, in preparation
[5] Freefem++ http://www.freefem.org (ver. 4.12)
[6] V. Rezzonico, Multiscale algorithm with patches of finite element and applications, PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 2007
[7] Triangle http://www.cs.cmu.edu/quake/triangle.html
[8] J. Wagner, Finite element methods with patches and applications, PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 2006
Cited by Sources:
Comments - Policy