[Estimation non-paramétrique du terme de dérive dans un processus de diffusion multidimensionnel]
We consider the problem of the density and drift estimation by the observation of a trajectory of an
On considère le problème de l'estimation de la densité et du terme de dérive par l'observation d'une trajectoire d'un processus de diffusion homogène en dimension d ayant une densité invariante unique. On construit les estimateurs par la méthode des noyaux, puis on en étudie le comportement asymptotique en
Accepté le :
Publié le :
Annamaria Bianchi 1
@article{CRMATH_2007__345_2_101_0, author = {Annamaria Bianchi}, title = {Nonparametric trend coefficient estimation for multidimensional diffusions}, journal = {Comptes Rendus. Math\'ematique}, pages = {101--105}, publisher = {Elsevier}, volume = {345}, number = {2}, year = {2007}, doi = {10.1016/j.crma.2007.05.012}, language = {en}, }
Annamaria Bianchi. Nonparametric trend coefficient estimation for multidimensional diffusions. Comptes Rendus. Mathématique, Volume 345 (2007) no. 2, pp. 101-105. doi : 10.1016/j.crma.2007.05.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.012/
[1] Closed-form likelihood expansions for multivariate diffusions, 2004 http://www.princeton.edu/~yacine/research.htm (Preprint available under)
[2] Sample paths adaptive density estimator, Math. Methods Statist., Volume 13 (2004) no. 2, pp. 123-152
[3] A family of minimax rates for density estimators in continuous time, Stochastic Anal. Appl., Volume 18 (2000) no. 6, pp. 871-900
[4] Nonparametric Statistics for Stochastic Processes, Springer-Verlag, New York, 1998
[5] An Introduction to Continuous-Time Stochastic Processes, Birkhäuser, Boston, 2005
[6] Asymptotic statistical equivalence for ergodic diffusions: the multidimensional case, 2005 http://www.proba.jussieu.fr/pageperso/dalalyan/ (Preprint available under)
[7] Statistical Inference for Ergodic Diffusion Processes, Springer Series in Statistics, New York, 2004
[8] Can we estimate the density's derivative with suroptimal rate?, Statist. Inference Stoch. Process., Volume 1 (1998), pp. 29-41
[9] A representation formula for transition probability densities of diffusions and applications, Stochastic Process. Appl., Volume 111 (2004), pp. 57-76
[10] The Fokker–Planck Equation, Springer-Verlag, Berlin, 1989
[11] Bounds for the mixing rate in the theory of stochastic equations, Theory Probab. Appl., Volume 32 (1987) no. 2, pp. 273-281
[12] On subexponential mixing rate for Markov processes, Theory Probab. Appl., Volume 49 (2005) no. 1, pp. 110-122
Cité par Sources :
Commentaires - Politique