Comptes Rendus
Statistics
Nonparametric trend coefficient estimation for multidimensional diffusions
Comptes Rendus. Mathématique, Volume 345 (2007) no. 2, pp. 101-105.

We consider the problem of the density and drift estimation by the observation of a trajectory of an Rd dimensional homogeneous diffusion process with a unique invariant density. We construct estimators of the kernel type and study the mean-square and almost sure uniform asymptotic behavior for these estimators. Finally, we give a class of processes satisfying our assumptions.

On considère le problème de l'estimation de la densité et du terme de dérive par l'observation d'une trajectoire d'un processus de diffusion homogène en dimension d ayant une densité invariante unique. On construit les estimateurs par la méthode des noyaux, puis on en étudie le comportement asymptotique en L2 et presque sûr. Finalement, on donne à titre d'exemple une classe de processus qui satisfont nos hypothèses.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.05.012

Annamaria Bianchi 1

1 Department of Mathematics, University of Milan, via Saldini 50, 20133 Milano, Italy
@article{CRMATH_2007__345_2_101_0,
     author = {Annamaria Bianchi},
     title = {Nonparametric trend coefficient estimation for multidimensional diffusions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {101--105},
     publisher = {Elsevier},
     volume = {345},
     number = {2},
     year = {2007},
     doi = {10.1016/j.crma.2007.05.012},
     language = {en},
}
TY  - JOUR
AU  - Annamaria Bianchi
TI  - Nonparametric trend coefficient estimation for multidimensional diffusions
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 101
EP  - 105
VL  - 345
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2007.05.012
LA  - en
ID  - CRMATH_2007__345_2_101_0
ER  - 
%0 Journal Article
%A Annamaria Bianchi
%T Nonparametric trend coefficient estimation for multidimensional diffusions
%J Comptes Rendus. Mathématique
%D 2007
%P 101-105
%V 345
%N 2
%I Elsevier
%R 10.1016/j.crma.2007.05.012
%G en
%F CRMATH_2007__345_2_101_0
Annamaria Bianchi. Nonparametric trend coefficient estimation for multidimensional diffusions. Comptes Rendus. Mathématique, Volume 345 (2007) no. 2, pp. 101-105. doi : 10.1016/j.crma.2007.05.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.012/

[1] Y. Ait-Sahalia Closed-form likelihood expansions for multivariate diffusions, 2004 http://www.princeton.edu/~yacine/research.htm (Preprint available under)

[2] D. Blanke Sample paths adaptive density estimator, Math. Methods Statist., Volume 13 (2004) no. 2, pp. 123-152

[3] D. Blanke; D. Bosq A family of minimax rates for density estimators in continuous time, Stochastic Anal. Appl., Volume 18 (2000) no. 6, pp. 871-900

[4] D. Bosq Nonparametric Statistics for Stochastic Processes, Springer-Verlag, New York, 1998

[5] V. Capasso; D. Bakstein An Introduction to Continuous-Time Stochastic Processes, Birkhäuser, Boston, 2005

[6] A. Dalalyan; M. Reiß Asymptotic statistical equivalence for ergodic diffusions: the multidimensional case, 2005 http://www.proba.jussieu.fr/pageperso/dalalyan/ (Preprint available under)

[7] Yu.A. Kutoyants Statistical Inference for Ergodic Diffusion Processes, Springer Series in Statistics, New York, 2004

[8] A. Lucas Can we estimate the density's derivative with suroptimal rate?, Statist. Inference Stoch. Process., Volume 1 (1998), pp. 29-41

[9] Z. Qian; W. Zheng A representation formula for transition probability densities of diffusions and applications, Stochastic Process. Appl., Volume 111 (2004), pp. 57-76

[10] H. Risken The Fokker–Planck Equation, Springer-Verlag, Berlin, 1989

[11] A.Yu. Veretennikov Bounds for the mixing rate in the theory of stochastic equations, Theory Probab. Appl., Volume 32 (1987) no. 2, pp. 273-281

[12] A.Yu. Veretennikov On subexponential mixing rate for Markov processes, Theory Probab. Appl., Volume 49 (2005) no. 1, pp. 110-122

Cited by Sources:

Comments - Policy