We consider the problem of the density and drift estimation by the observation of a trajectory of an dimensional homogeneous diffusion process with a unique invariant density. We construct estimators of the kernel type and study the mean-square and almost sure uniform asymptotic behavior for these estimators. Finally, we give a class of processes satisfying our assumptions.
On considère le problème de l'estimation de la densité et du terme de dérive par l'observation d'une trajectoire d'un processus de diffusion homogène en dimension d ayant une densité invariante unique. On construit les estimateurs par la méthode des noyaux, puis on en étudie le comportement asymptotique en et presque sûr. Finalement, on donne à titre d'exemple une classe de processus qui satisfont nos hypothèses.
Accepted:
Published online:
Annamaria Bianchi 1
@article{CRMATH_2007__345_2_101_0, author = {Annamaria Bianchi}, title = {Nonparametric trend coefficient estimation for multidimensional diffusions}, journal = {Comptes Rendus. Math\'ematique}, pages = {101--105}, publisher = {Elsevier}, volume = {345}, number = {2}, year = {2007}, doi = {10.1016/j.crma.2007.05.012}, language = {en}, }
Annamaria Bianchi. Nonparametric trend coefficient estimation for multidimensional diffusions. Comptes Rendus. Mathématique, Volume 345 (2007) no. 2, pp. 101-105. doi : 10.1016/j.crma.2007.05.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.012/
[1] Closed-form likelihood expansions for multivariate diffusions, 2004 http://www.princeton.edu/~yacine/research.htm (Preprint available under)
[2] Sample paths adaptive density estimator, Math. Methods Statist., Volume 13 (2004) no. 2, pp. 123-152
[3] A family of minimax rates for density estimators in continuous time, Stochastic Anal. Appl., Volume 18 (2000) no. 6, pp. 871-900
[4] Nonparametric Statistics for Stochastic Processes, Springer-Verlag, New York, 1998
[5] An Introduction to Continuous-Time Stochastic Processes, Birkhäuser, Boston, 2005
[6] Asymptotic statistical equivalence for ergodic diffusions: the multidimensional case, 2005 http://www.proba.jussieu.fr/pageperso/dalalyan/ (Preprint available under)
[7] Statistical Inference for Ergodic Diffusion Processes, Springer Series in Statistics, New York, 2004
[8] Can we estimate the density's derivative with suroptimal rate?, Statist. Inference Stoch. Process., Volume 1 (1998), pp. 29-41
[9] A representation formula for transition probability densities of diffusions and applications, Stochastic Process. Appl., Volume 111 (2004), pp. 57-76
[10] The Fokker–Planck Equation, Springer-Verlag, Berlin, 1989
[11] Bounds for the mixing rate in the theory of stochastic equations, Theory Probab. Appl., Volume 32 (1987) no. 2, pp. 273-281
[12] On subexponential mixing rate for Markov processes, Theory Probab. Appl., Volume 49 (2005) no. 1, pp. 110-122
Cited by Sources:
Comments - Policy