[Instabilité des ondes
Nous étendons les résultats de Lebeau (2005) et Christ et al. (2007) aux cas de nonlinearités surcritiques quelconques. On traite aussi le cas 2D pour des nonlinéarités à croissance exponentielle. La preuve utilise la vitesse finie de propagation et une étude quantitative de l'E.D.O. associée.
We extend the results of Lebeau (2005) and Christ et al. (2007) to more general
Accepté le :
Publié le :
Slim Ibrahim 1 ; Mohamed Majdoub 2 ; Nader Masmoudi 3
@article{CRMATH_2007__345_3_133_0, author = {Slim Ibrahim and Mohamed Majdoub and Nader Masmoudi}, title = {Ill-posedness of $ {H}^{1}$-supercritical waves}, journal = {Comptes Rendus. Math\'ematique}, pages = {133--138}, publisher = {Elsevier}, volume = {345}, number = {3}, year = {2007}, doi = {10.1016/j.crma.2007.06.008}, language = {en}, }
Slim Ibrahim; Mohamed Majdoub; Nader Masmoudi. Ill-posedness of $ {H}^{1}$-supercritical waves. Comptes Rendus. Mathématique, Volume 345 (2007) no. 3, pp. 133-138. doi : 10.1016/j.crma.2007.06.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.06.008/
[1] T. Alazard, R. Carles, Sequential loss of regularity for super-critical nonlinear Schrödinger equations, Preprint
[2] N. Burq, P. Gérard, S. Ibrahim, Instability results for nonlinear Schrödinger and wave equations, Preprint
[3] Bilinear estimates and the nonlinear Schödinger equation on surfaces, Inven. Math., Volume 159 (2005), pp. 187-223
[4] M. Christ, J. Colliander, T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, | arXiv
[5] The global Cauchy problem for nonlinear Klein–Gordon equation, Math. Z, Volume 189 (1985), pp. 487-505
[6] The global Cauchy problem for the critical nonlinear wave equation, J. Funct. Anal., Volume 110 (1992), pp. 96-130
[7] Global solutions for a semilinear 2D Klein–Gordon equation with exponential type nonlinearity, Commun. Pure Appl. Math., Volume 59 (2006) no. 11, pp. 1639-1658
[8] S. Ibrahim, M. Majdoub, N. Masmoudi, On the well-posedness of some NLW and NLS equations, in preparation
[9] On the ill-posedness of some canonical dispersive equations, Duke Math. J., Volume 106 (2001) no. 3, pp. 617-633
[10] Nonlinear optics and supercritical wave equation, Bull. Soc. R. Sci. Liège, Volume 70 (2001) no. 4–6, pp. 267-306
[11] Perte de régularuté pour l'équation des ondes surcritique, Bull. Soc. Math. France, Volume 133 (2005), pp. 145-157
[12] A sharp form of an inequality of N. Trudinger, Indiana Univ. Math. J., Volume 20 (1971), pp. 1077-1092
[13] Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth, Math. Z., Volume 231 (1999), pp. 479-487
[14] The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order, Discrete and Continuous Dynamical Systems, Volume 5 (1999) no. 1, pp. 215-231
[15] Well-posedness in the energy space for semilinear wave equation with critical growth, IMRN, Volume 7 (1994), pp. 303-309
[16] Nonlinear Wave Equations, Conf. Board of the Math. Sciences, vol. 73, Amer. Math. Soc., 1989
[17] Semilinear wave equations, Bull. Amer. Math. Soc. (N.S.), Volume 26 (1992), pp. 53-85
[18] Global regularity for a logarithmically supercritical defocussing nonlinear wave equation for spherically symmetric data, J. Hyperbolic Diff. Eq., Volume 4 (2007), pp. 259-266
- Scattering below the ground state for the 2D non-linear Schrödinger and Klein–Gordon equations revisited, Journal of Mathematical Physics, Volume 61 (2020) no. 8 | DOI:10.1063/5.0014195
- Symplectic non-squeezing for the cubic nonlinear Klein–Gordon equation on T3, Journal of Functional Analysis, Volume 272 (2017) no. 7, p. 3019 | DOI:10.1016/j.jfa.2016.12.025
- Ill-Posedness of the Cubic Nonlinear Half-Wave Equation and Other Fractional NLS on the Real Line, International Mathematics Research Notices (2016), p. rnw246 | DOI:10.1093/imrn/rnw246
- The Cauchy problem for a system of nonlinear heat equations in two space dimensions, Asian-European Journal of Mathematics, Volume 08 (2015) no. 01, p. 1550004 | DOI:10.1142/s1793557115500047
- A note on global well-posedness and blow-up of some semilinear evolution equations, Evolution Equations Control Theory, Volume 4 (2015) no. 3, p. 355 | DOI:10.3934/eect.2015.4.355
- Random Data Cauchy Theory for Nonlinear Wave Equations of Power-Type on ℝ3, Communications in Partial Differential Equations, Volume 39 (2014) no. 12, p. 2262 | DOI:10.1080/03605302.2014.933239
- Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity, Communications on Pure Applied Analysis, Volume 13 (2014) no. 1, p. 273 | DOI:10.3934/cpaa.2014.13.273
- On Uniqueness for Supercritical Nonlinear Wave and Schrodinger Equations, International Mathematics Research Notices (2014) | DOI:10.1093/imrn/rnu002
- Remarks on the semilinear Schrödinger equation, Journal of Mathematical Analysis and Applications, Volume 400 (2013) no. 2, p. 331 | DOI:10.1016/j.jmaa.2012.11.037
- Well- and ill-posedness issues for energy supercritical waves, Analysis PDE, Volume 4 (2011) no. 2, p. 341 | DOI:10.2140/apde.2011.4.341
- On the lack of compactness in the 2D critical Sobolev embedding, Journal of Functional Analysis, Volume 260 (2011) no. 1, p. 208 | DOI:10.1016/j.jfa.2010.08.016
- Scattering for the two-dimensional energy-critical wave equation, Duke Mathematical Journal, Volume 150 (2009) no. 2 | DOI:10.1215/00127094-2009-053
- ENERGY CRITICAL NLS IN TWO SPACE DIMENSIONS, Journal of Hyperbolic Differential Equations, Volume 06 (2009) no. 03, p. 549 | DOI:10.1142/s0219891609001927
- Instability in supercritical nonlinear wave equations: Theoretical results and symplectic integration, Mathematics and Computers in Simulation, Volume 80 (2009) no. 1, p. 2 | DOI:10.1016/j.matcom.2009.06.023
Cité par 14 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier