We extend the results of Lebeau (2005) and Christ et al. (2007) to more general -supercritical nonlinearities. We also extend those results to the 2D case for exponentially growing nonlinearities. The proof uses the finite speed of propagation and a quantitative study of the associated O.D.E. It does not require any scaling invariance of the equation.
Nous étendons les résultats de Lebeau (2005) et Christ et al. (2007) aux cas de nonlinearités surcritiques quelconques. On traite aussi le cas 2D pour des nonlinéarités à croissance exponentielle. La preuve utilise la vitesse finie de propagation et une étude quantitative de l'E.D.O. associée.
Accepted:
Published online:
Slim Ibrahim 1; Mohamed Majdoub 2; Nader Masmoudi 3
@article{CRMATH_2007__345_3_133_0, author = {Slim Ibrahim and Mohamed Majdoub and Nader Masmoudi}, title = {Ill-posedness of $ {H}^{1}$-supercritical waves}, journal = {Comptes Rendus. Math\'ematique}, pages = {133--138}, publisher = {Elsevier}, volume = {345}, number = {3}, year = {2007}, doi = {10.1016/j.crma.2007.06.008}, language = {en}, }
Slim Ibrahim; Mohamed Majdoub; Nader Masmoudi. Ill-posedness of $ {H}^{1}$-supercritical waves. Comptes Rendus. Mathématique, Volume 345 (2007) no. 3, pp. 133-138. doi : 10.1016/j.crma.2007.06.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.06.008/
[1] T. Alazard, R. Carles, Sequential loss of regularity for super-critical nonlinear Schrödinger equations, Preprint
[2] N. Burq, P. Gérard, S. Ibrahim, Instability results for nonlinear Schrödinger and wave equations, Preprint
[3] Bilinear estimates and the nonlinear Schödinger equation on surfaces, Inven. Math., Volume 159 (2005), pp. 187-223
[4] M. Christ, J. Colliander, T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, | arXiv
[5] The global Cauchy problem for nonlinear Klein–Gordon equation, Math. Z, Volume 189 (1985), pp. 487-505
[6] The global Cauchy problem for the critical nonlinear wave equation, J. Funct. Anal., Volume 110 (1992), pp. 96-130
[7] Global solutions for a semilinear 2D Klein–Gordon equation with exponential type nonlinearity, Commun. Pure Appl. Math., Volume 59 (2006) no. 11, pp. 1639-1658
[8] S. Ibrahim, M. Majdoub, N. Masmoudi, On the well-posedness of some NLW and NLS equations, in preparation
[9] On the ill-posedness of some canonical dispersive equations, Duke Math. J., Volume 106 (2001) no. 3, pp. 617-633
[10] Nonlinear optics and supercritical wave equation, Bull. Soc. R. Sci. Liège, Volume 70 (2001) no. 4–6, pp. 267-306
[11] Perte de régularuté pour l'équation des ondes surcritique, Bull. Soc. Math. France, Volume 133 (2005), pp. 145-157
[12] A sharp form of an inequality of N. Trudinger, Indiana Univ. Math. J., Volume 20 (1971), pp. 1077-1092
[13] Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth, Math. Z., Volume 231 (1999), pp. 479-487
[14] The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order, Discrete and Continuous Dynamical Systems, Volume 5 (1999) no. 1, pp. 215-231
[15] Well-posedness in the energy space for semilinear wave equation with critical growth, IMRN, Volume 7 (1994), pp. 303-309
[16] Nonlinear Wave Equations, Conf. Board of the Math. Sciences, vol. 73, Amer. Math. Soc., 1989
[17] Semilinear wave equations, Bull. Amer. Math. Soc. (N.S.), Volume 26 (1992), pp. 53-85
[18] Global regularity for a logarithmically supercritical defocussing nonlinear wave equation for spherically symmetric data, J. Hyperbolic Diff. Eq., Volume 4 (2007), pp. 259-266
Cited by Sources:
Comments - Policy