Comptes Rendus
Partial Differential Equations
Ill-posedness of H1-supercritical waves
[Instabilité des ondes H1-surcritiques]
Comptes Rendus. Mathématique, Volume 345 (2007) no. 3, pp. 133-138.

Nous étendons les résultats de Lebeau (2005) et Christ et al. (2007) aux cas de nonlinearités surcritiques quelconques. On traite aussi le cas 2D pour des nonlinéarités à croissance exponentielle. La preuve utilise la vitesse finie de propagation et une étude quantitative de l'E.D.O. associée.

We extend the results of Lebeau (2005) and Christ et al. (2007) to more general H1-supercritical nonlinearities. We also extend those results to the 2D case for exponentially growing nonlinearities. The proof uses the finite speed of propagation and a quantitative study of the associated O.D.E. It does not require any scaling invariance of the equation.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.06.008

Slim Ibrahim 1 ; Mohamed Majdoub 2 ; Nader Masmoudi 3

1 Department of Mathematics & Statistics, Arizona State University, Tempe, AZ 85287-1804, USA
2 Département de mathématiques, faculté des sciences de Tunis, campus universitaire 2092, Tunis, Tunisia
3 The Courant Institute of Mathematical Sciences, NY University, 251 Mercer St., New York, NY 10012, USA
@article{CRMATH_2007__345_3_133_0,
     author = {Slim Ibrahim and Mohamed Majdoub and Nader Masmoudi},
     title = {Ill-posedness of $ {H}^{1}$-supercritical waves},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {133--138},
     publisher = {Elsevier},
     volume = {345},
     number = {3},
     year = {2007},
     doi = {10.1016/j.crma.2007.06.008},
     language = {en},
}
TY  - JOUR
AU  - Slim Ibrahim
AU  - Mohamed Majdoub
AU  - Nader Masmoudi
TI  - Ill-posedness of $ {H}^{1}$-supercritical waves
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 133
EP  - 138
VL  - 345
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2007.06.008
LA  - en
ID  - CRMATH_2007__345_3_133_0
ER  - 
%0 Journal Article
%A Slim Ibrahim
%A Mohamed Majdoub
%A Nader Masmoudi
%T Ill-posedness of $ {H}^{1}$-supercritical waves
%J Comptes Rendus. Mathématique
%D 2007
%P 133-138
%V 345
%N 3
%I Elsevier
%R 10.1016/j.crma.2007.06.008
%G en
%F CRMATH_2007__345_3_133_0
Slim Ibrahim; Mohamed Majdoub; Nader Masmoudi. Ill-posedness of $ {H}^{1}$-supercritical waves. Comptes Rendus. Mathématique, Volume 345 (2007) no. 3, pp. 133-138. doi : 10.1016/j.crma.2007.06.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.06.008/

[1] T. Alazard, R. Carles, Sequential loss of regularity for super-critical nonlinear Schrödinger equations, Preprint

[2] N. Burq, P. Gérard, S. Ibrahim, Instability results for nonlinear Schrödinger and wave equations, Preprint

[3] N. Burq; P. Gérard; N. Tzvetkov Bilinear estimates and the nonlinear Schödinger equation on surfaces, Inven. Math., Volume 159 (2005), pp. 187-223

[4] M. Christ, J. Colliander, T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, | arXiv

[5] J. Ginibre; G. Velo The global Cauchy problem for nonlinear Klein–Gordon equation, Math. Z, Volume 189 (1985), pp. 487-505

[6] J. Ginibre; A. Soffer; G. Velo The global Cauchy problem for the critical nonlinear wave equation, J. Funct. Anal., Volume 110 (1992), pp. 96-130

[7] S. Ibrahim; M. Majdoub; N. Masmoudi Global solutions for a semilinear 2D Klein–Gordon equation with exponential type nonlinearity, Commun. Pure Appl. Math., Volume 59 (2006) no. 11, pp. 1639-1658

[8] S. Ibrahim, M. Majdoub, N. Masmoudi, On the well-posedness of some NLW and NLS equations, in preparation

[9] C. Kenig; G. Ponce; L. Vega On the ill-posedness of some canonical dispersive equations, Duke Math. J., Volume 106 (2001) no. 3, pp. 617-633

[10] G. Lebeau Nonlinear optics and supercritical wave equation, Bull. Soc. R. Sci. Liège, Volume 70 (2001) no. 4–6, pp. 267-306

[11] G. Lebeau Perte de régularuté pour l'équation des ondes surcritique, Bull. Soc. Math. France, Volume 133 (2005), pp. 145-157

[12] J. Moser A sharp form of an inequality of N. Trudinger, Indiana Univ. Math. J., Volume 20 (1971), pp. 1077-1092

[13] M. Nakamura; T. Ozawa Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth, Math. Z., Volume 231 (1999), pp. 479-487

[14] M. Nakamura; T. Ozawa The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order, Discrete and Continuous Dynamical Systems, Volume 5 (1999) no. 1, pp. 215-231

[15] J. Shatah; M. Struwe Well-posedness in the energy space for semilinear wave equation with critical growth, IMRN, Volume 7 (1994), pp. 303-309

[16] W. Strauss Nonlinear Wave Equations, Conf. Board of the Math. Sciences, vol. 73, Amer. Math. Soc., 1989

[17] M. Struwe Semilinear wave equations, Bull. Amer. Math. Soc. (N.S.), Volume 26 (1992), pp. 53-85

[18] T. Tao Global regularity for a logarithmically supercritical defocussing nonlinear wave equation for spherically symmetric data, J. Hyperbolic Diff. Eq., Volume 4 (2007), pp. 259-266

  • Zihua Guo; Jia Shen Scattering below the ground state for the 2D non-linear Schrödinger and Klein–Gordon equations revisited, Journal of Mathematical Physics, Volume 61 (2020) no. 8 | DOI:10.1063/5.0014195
  • Dana Mendelson Symplectic non-squeezing for the cubic nonlinear Klein–Gordon equation on T3, Journal of Functional Analysis, Volume 272 (2017) no. 7, p. 3019 | DOI:10.1016/j.jfa.2016.12.025
  • Antoine Choffrut; Oana Pocovnicu Ill-Posedness of the Cubic Nonlinear Half-Wave Equation and Other Fractional NLS on the Real Line, International Mathematics Research Notices (2016), p. rnw246 | DOI:10.1093/imrn/rnw246
  • Amel Chouichi; Sarah Otsmane The Cauchy problem for a system of nonlinear heat equations in two space dimensions, Asian-European Journal of Mathematics, Volume 08 (2015) no. 01, p. 1550004 | DOI:10.1142/s1793557115500047
  • Tarek Saanouni A note on global well-posedness and blow-up of some semilinear evolution equations, Evolution Equations Control Theory, Volume 4 (2015) no. 3, p. 355 | DOI:10.3934/eect.2015.4.355
  • Jonas Lührmann; Dana Mendelson Random Data Cauchy Theory for Nonlinear Wave Equations of Power-Type on ℝ3, Communications in Partial Differential Equations, Volume 39 (2014) no. 12, p. 2262 | DOI:10.1080/03605302.2014.933239
  • Tarek Saanouni Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity, Communications on Pure Applied Analysis, Volume 13 (2014) no. 1, p. 273 | DOI:10.3934/cpaa.2014.13.273
  • M. Majdoub; N. Masmoudi On Uniqueness for Supercritical Nonlinear Wave and Schrodinger Equations, International Mathematics Research Notices (2014) | DOI:10.1093/imrn/rnu002
  • T. Saanouni Remarks on the semilinear Schrödinger equation, Journal of Mathematical Analysis and Applications, Volume 400 (2013) no. 2, p. 331 | DOI:10.1016/j.jmaa.2012.11.037
  • Slim Ibrahim; Mohamed Majdoub; Nader Masmoudi Well- and ill-posedness issues for energy supercritical waves, Analysis PDE, Volume 4 (2011) no. 2, p. 341 | DOI:10.2140/apde.2011.4.341
  • Hajer Bahouri; Mohamed Majdoub; Nader Masmoudi On the lack of compactness in the 2D critical Sobolev embedding, Journal of Functional Analysis, Volume 260 (2011) no. 1, p. 208 | DOI:10.1016/j.jfa.2010.08.016
  • Slim Ibrahim; Mohamed Majdoub; Nader Masmoudi; Kenji Nakanishi Scattering for the two-dimensional energy-critical wave equation, Duke Mathematical Journal, Volume 150 (2009) no. 2 | DOI:10.1215/00127094-2009-053
  • J. COLLIANDER; S. IBRAHIM; M. MAJDOUB; N. MASMOUDI ENERGY CRITICAL NLS IN TWO SPACE DIMENSIONS, Journal of Hyperbolic Differential Equations, Volume 06 (2009) no. 03, p. 549 | DOI:10.1142/s0219891609001927
  • Slim Ibrahim; Philippe Guyenne Instability in supercritical nonlinear wave equations: Theoretical results and symplectic integration, Mathematics and Computers in Simulation, Volume 80 (2009) no. 1, p. 2 | DOI:10.1016/j.matcom.2009.06.023

Cité par 14 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: