In this Note we study the convergence results for trigonometric series in -spaces on one-dimensional and n-dimension torus. The sufficient conditions for these results to hold as well as criteria are written for the series with general monotone coefficients. The Hardy–Littlewood type theorem is obtained for multiple series. Several corollaries, in particular, u-convergence are presented.
Dans cette Note on établit des résultats de convergence de séries trigonométriques dans des espaces unidimensionnels et sur le tore à n-dimensions. Des conditions suffisantes et des critères de validité sont établis pour des séries à coefficients généraux monotones. Un théorème de type Hardy–Littlewood est démontré dans le cas de séries multidimensionnelles. Des corollaires sont énoncés, en particulier dans le cas des séries multidimensionnelles.
Accepted:
Published online:
Mikhail Dyachenko 1; Sergey Tikhonov 2
@article{CRMATH_2007__345_3_123_0, author = {Mikhail Dyachenko and Sergey Tikhonov}, title = {Convergence of trigonometric series with general monotone coefficients}, journal = {Comptes Rendus. Math\'ematique}, pages = {123--126}, publisher = {Elsevier}, volume = {345}, number = {3}, year = {2007}, doi = {10.1016/j.crma.2007.06.009}, language = {en}, }
Mikhail Dyachenko; Sergey Tikhonov. Convergence of trigonometric series with general monotone coefficients. Comptes Rendus. Mathématique, Volume 345 (2007) no. 3, pp. 123-126. doi : 10.1016/j.crma.2007.06.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.06.009/
[1] Integrability theorems for Fourier series, Duke Math. J., Volume 33 (1966), pp. 223-228
[2] Norms of Dirichlet kernels and some other trigonometric polynomials in -spaces, Russ. Acad. Sci., Sb. Math., Volume 78 (1994) no. 2, pp. 267-282 (Translation from Mat. Sb., 184, 3, 1993, pp. 3-20)
[3] u-convergence of Fourier series with monotone and with positive coefficients, Math. Notes, Volume 70 (2001) no. 3, pp. 320-328 (Translation from Mat. Zametki, 70, 3, 2001, pp. 356-365)
[4] Convergence of multiple Fourier series: main results and unsolved problems, Fourier Analysis and Related Topics, Banach Cent. Publ., vol. 56, 2002, pp. 37-44
[5] M.I. Dyachenko, S. Tikhonov, A Hardy–Littlewood theorem for multiple series, J. Math. Anal. Appl., in press
[6] Notes on some points in the integral calculus, LXYI, Messenger Math., Volume 58 (1928), pp. 50-52
[7] A new condition for the uniform convergence of certain trigonometric series, Acta Math. Hung., Volume 108 (2005) no. 1–2, pp. 161-169
[8] On the uniform convergence and boundedness of a certain class of sine series, Anal. Math., Volume 27 (2001) no. 4, pp. 279-285
[9] On double cosine, sine, and Walsh series with monotone coefficients, Proc. Amer. Math. Soc., Volume 109 (1990) no. 2, pp. 417-425
[10] -convergence of Fourier series with O-regularly varying quasimonotonic coefficients, J. Approx. Theory, Volume 60 (1990) no. 2, pp. 168-173
[11] Trigonometric series with monotone type coefficients, Approximation Theory. Asymptotical Expansions (2001) no. Suppl. 1, pp. 214-224 (Proc. Steklov Inst. Math.)
[12] Convergence in the L metric of Fourier series with quasimonotone coefficients, Trudy Mat. Inst. Steklova, Volume 134 (1975), pp. 310-313 (Translation in Proc. Steklov Inst. Math., 134, 1975, pp. 351-355)
[13] Trigonometric series with general monotone coefficients, J. Math. Anal. Appl., Volume 326 (2007) no. 1, pp. 721-735
[14] Trigonometric Series, vols. I, II, Cambridge Univ. Press, Cambridge, 2002
Cited by Sources:
Comments - Policy