Comptes Rendus
Mathematical Analysis
Convergence of trigonometric series with general monotone coefficients
Comptes Rendus. Mathématique, Volume 345 (2007) no. 3, pp. 123-126.

In this Note we study the convergence results for trigonometric series in Lp-spaces on one-dimensional and n-dimension torus. The sufficient conditions for these results to hold as well as criteria are written for the series with general monotone coefficients. The Hardy–Littlewood type theorem is obtained for multiple series. Several corollaries, in particular, u-convergence are presented.

Dans cette Note on établit des résultats de convergence de séries trigonométriques dans des espaces Lp unidimensionnels et sur le tore à n-dimensions. Des conditions suffisantes et des critères de validité sont établis pour des séries à coefficients généraux monotones. Un théorème de type Hardy–Littlewood est démontré dans le cas de séries multidimensionnelles. Des corollaires sont énoncés, en particulier dans le cas des séries multidimensionnelles.

Published online:
DOI: 10.1016/j.crma.2007.06.009

Mikhail Dyachenko 1; Sergey Tikhonov 2

1 Moscow State University, Vorobevy Gory, 117234 Moscow, Russia
2 Scuola Normale Superiore, Pisa, Piazza dei Cavalieri 7, 56126 Pisa, Italy
     author = {Mikhail Dyachenko and Sergey Tikhonov},
     title = {Convergence of trigonometric series with general monotone coefficients},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {123--126},
     publisher = {Elsevier},
     volume = {345},
     number = {3},
     year = {2007},
     doi = {10.1016/j.crma.2007.06.009},
     language = {en},
AU  - Mikhail Dyachenko
AU  - Sergey Tikhonov
TI  - Convergence of trigonometric series with general monotone coefficients
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 123
EP  - 126
VL  - 345
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crma.2007.06.009
LA  - en
ID  - CRMATH_2007__345_3_123_0
ER  - 
%0 Journal Article
%A Mikhail Dyachenko
%A Sergey Tikhonov
%T Convergence of trigonometric series with general monotone coefficients
%J Comptes Rendus. Mathématique
%D 2007
%P 123-126
%V 345
%N 3
%I Elsevier
%R 10.1016/j.crma.2007.06.009
%G en
%F CRMATH_2007__345_3_123_0
Mikhail Dyachenko; Sergey Tikhonov. Convergence of trigonometric series with general monotone coefficients. Comptes Rendus. Mathématique, Volume 345 (2007) no. 3, pp. 123-126. doi : 10.1016/j.crma.2007.06.009.

[1] R. Askey; S. Wainger Integrability theorems for Fourier series, Duke Math. J., Volume 33 (1966), pp. 223-228

[2] M.I. Dyachenko Norms of Dirichlet kernels and some other trigonometric polynomials in Lp-spaces, Russ. Acad. Sci., Sb. Math., Volume 78 (1994) no. 2, pp. 267-282 (Translation from Mat. Sb., 184, 3, 1993, pp. 3-20)

[3] M.I. Dyachenko u-convergence of Fourier series with monotone and with positive coefficients, Math. Notes, Volume 70 (2001) no. 3, pp. 320-328 (Translation from Mat. Zametki, 70, 3, 2001, pp. 356-365)

[4] M.I. Dyachenko Convergence of multiple Fourier series: main results and unsolved problems, Fourier Analysis and Related Topics, Banach Cent. Publ., vol. 56, 2002, pp. 37-44

[5] M.I. Dyachenko, S. Tikhonov, A Hardy–Littlewood theorem for multiple series, J. Math. Anal. Appl., in press

[6] G.H. Hardy Notes on some points in the integral calculus, LXYI, Messenger Math., Volume 58 (1928), pp. 50-52

[7] R.J. Le; S.P. Zhou A new condition for the uniform convergence of certain trigonometric series, Acta Math. Hung., Volume 108 (2005) no. 1–2, pp. 161-169

[8] L. Leindler On the uniform convergence and boundedness of a certain class of sine series, Anal. Math., Volume 27 (2001) no. 4, pp. 279-285

[9] F. Móricz On double cosine, sine, and Walsh series with monotone coefficients, Proc. Amer. Math. Soc., Volume 109 (1990) no. 2, pp. 417-425

[10] V.B. Stanojevic L1-convergence of Fourier series with O-regularly varying quasimonotonic coefficients, J. Approx. Theory, Volume 60 (1990) no. 2, pp. 168-173

[11] S.B. Stechkin Trigonometric series with monotone type coefficients, Approximation Theory. Asymptotical Expansions (2001) no. Suppl. 1, pp. 214-224 (Proc. Steklov Inst. Math.)

[12] S.A. Teljakovskiĭ; G.A. Fomin Convergence in the L metric of Fourier series with quasimonotone coefficients, Trudy Mat. Inst. Steklova, Volume 134 (1975), pp. 310-313 (Translation in Proc. Steklov Inst. Math., 134, 1975, pp. 351-355)

[13] S. Tikhonov Trigonometric series with general monotone coefficients, J. Math. Anal. Appl., Volume 326 (2007) no. 1, pp. 721-735

[14] A. Zygmund Trigonometric Series, vols. I, II, Cambridge Univ. Press, Cambridge, 2002

Cited by Sources:

Comments - Policy