We investigate a method proposed by E. Arrondo and J. Caravantes to study the Picard group of a smooth low-codimensional subvariety X in a variety Y when Y is homogeneous. We prove that this method is strongly related to the signature of the Poincaré pairing on the middle cohomology of Y. We give under some topological assumptions a bound on the rank of Picard group in terms of and remove these assumptions for Grassmannians to recover the main result of E. Arrondo and J. Caravantes.
E. Arrondo et J. Caravantes ont proposé une méthode pour étudier le groupe de Picard d'une sous-variété lisse X d'une variété Y. Dans le cas où Y est homogène, nous montrons que cette méthode est intimement liée à la signature de l'accouplement de Poincaré sur la cohomologie de dimension moitié de Y. Nous donnons, sous certaines hypothèses topologiques, une borne sur le rang de en fonction de . Dans le cas des grassmanniennes, ces conditions topologiques sont satisfaites et nous obtenons une généralisation des résultats de E. Arrondo et J. Caravantes.
Accepted:
Published online:
Nicolas Perrin 1
@article{CRMATH_2007__345_3_155_0, author = {Nicolas Perrin}, title = {Small codimension smooth subvarieties in even-dimensional homogeneous spaces with {Picard} group $ \mathbb{Z}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {155--160}, publisher = {Elsevier}, volume = {345}, number = {3}, year = {2007}, doi = {10.1016/j.crma.2007.06.012}, language = {en}, }
TY - JOUR AU - Nicolas Perrin TI - Small codimension smooth subvarieties in even-dimensional homogeneous spaces with Picard group $ \mathbb{Z}$ JO - Comptes Rendus. Mathématique PY - 2007 SP - 155 EP - 160 VL - 345 IS - 3 PB - Elsevier DO - 10.1016/j.crma.2007.06.012 LA - en ID - CRMATH_2007__345_3_155_0 ER -
Nicolas Perrin. Small codimension smooth subvarieties in even-dimensional homogeneous spaces with Picard group $ \mathbb{Z}$. Comptes Rendus. Mathématique, Volume 345 (2007) no. 3, pp. 155-160. doi : 10.1016/j.crma.2007.06.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.06.012/
[1] On the Picard group of low-codimension subvarieties | arXiv
[2] On the homotopy groups of complex projective algebraic manifolds, Math. Scand., Volume 30 (1972), pp. 88-94
[3] Lectures on the geometry of flag varieties, Topics in Cohomological Studies of Algebraic Varieties, Trends Math., Birkhäuser, Basel, 2005, pp. 33-85
[4] Geometry over composition algebras: projective geometry, J. Algebra, Volume 298 (2006) no. 2, pp. 340-362
[5] Théorèmes de connexité pour les produits d'espaces projectifs et les grassmanniennes, Amer. J. Math., Volume 118 (1996) no. 6, pp. 1347-1367
[6] A connectedness theorem for projective varieties, with applications to intersections and singularities of mappings, Ann. of Math. (2), Volume 110 (1979) no. 1, pp. 159-166
[7] Positivity in Algebraic Geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 48, Springer-Verlag, Berlin, 2004 (xviii+387 pp)
[8] Small resolutions of minuscule Schubert varieties (Compositio Math., in press) | arXiv
[9] On the signature of homogeneous spaces, Geom. Dedicata, Volume 43 (1992) no. 1, pp. 109-120
[10] Complex subspaces of homogeneous complex manifolds. II. Homotopy results, Nagoya Math. J., Volume 86 (1982), pp. 101-129
Cited by Sources:
Comments - Policy