Comptes Rendus
Algebraic Geometry
Fourier–Mukai transforms of curves and principal polarizations
Comptes Rendus. Mathématique, Volume 345 (2007) no. 4, pp. 203-208.

Given a Fourier–Mukai transform Φ:D(C)D(C) between the bounded derived categories of two smooth projective curves, we verify that the induced map ϕ:J(C)J(C) between the Jacobian varieties preserves the principal polarization if and only if Φ is an equivalence.

Soit Φ:D(C)D(C) une transformation de Fourier–Mukai entre les catégories dérivées bornées de deux courbes lisses projectives. On vérifie que l'application ϕ:J(C)J(C) induite entre les variétés jacobiennes préserve les polarisations principales si et seulement si Φ est une équivalence.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.07.006

Marcello Bernardara 1

1 Laboratoire J. A. Dieudonné, université de Nice – Sophia Antipolis, parc Valrose, 06108 Nice, France
@article{CRMATH_2007__345_4_203_0,
     author = {Marcello Bernardara},
     title = {Fourier{\textendash}Mukai transforms of curves and principal polarizations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {203--208},
     publisher = {Elsevier},
     volume = {345},
     number = {4},
     year = {2007},
     doi = {10.1016/j.crma.2007.07.006},
     language = {en},
}
TY  - JOUR
AU  - Marcello Bernardara
TI  - Fourier–Mukai transforms of curves and principal polarizations
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 203
EP  - 208
VL  - 345
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2007.07.006
LA  - en
ID  - CRMATH_2007__345_4_203_0
ER  - 
%0 Journal Article
%A Marcello Bernardara
%T Fourier–Mukai transforms of curves and principal polarizations
%J Comptes Rendus. Mathématique
%D 2007
%P 203-208
%V 345
%N 4
%I Elsevier
%R 10.1016/j.crma.2007.07.006
%G en
%F CRMATH_2007__345_4_203_0
Marcello Bernardara. Fourier–Mukai transforms of curves and principal polarizations. Comptes Rendus. Mathématique, Volume 345 (2007) no. 4, pp. 203-208. doi : 10.1016/j.crma.2007.07.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.006/

[1] C. Birkenhake; H. Lange Complex Abelian Varieties, Grundlehren der Math. Wissenschaften, vol. 302, Springer-Verlag, 1992

[2] P. Griffiths; J. Harris Principles of Algebraic Geometry, Wiley Interscience, 1978

[3] D. Huybrechts Fourier–Mukai Transforms in Algebraic Geometry, Oxford Math. Monographs, Oxford University Press, 2006

Cited by Sources:

Comments - Policy