Given a Fourier–Mukai transform between the bounded derived categories of two smooth projective curves, we verify that the induced map between the Jacobian varieties preserves the principal polarization if and only if Φ is an equivalence.
Soit une transformation de Fourier–Mukai entre les catégories dérivées bornées de deux courbes lisses projectives. On vérifie que l'application induite entre les variétés jacobiennes préserve les polarisations principales si et seulement si Φ est une équivalence.
Accepted:
Published online:
Marcello Bernardara 1
@article{CRMATH_2007__345_4_203_0, author = {Marcello Bernardara}, title = {Fourier{\textendash}Mukai transforms of curves and principal polarizations}, journal = {Comptes Rendus. Math\'ematique}, pages = {203--208}, publisher = {Elsevier}, volume = {345}, number = {4}, year = {2007}, doi = {10.1016/j.crma.2007.07.006}, language = {en}, }
Marcello Bernardara. Fourier–Mukai transforms of curves and principal polarizations. Comptes Rendus. Mathématique, Volume 345 (2007) no. 4, pp. 203-208. doi : 10.1016/j.crma.2007.07.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.07.006/
[1] Complex Abelian Varieties, Grundlehren der Math. Wissenschaften, vol. 302, Springer-Verlag, 1992
[2] Principles of Algebraic Geometry, Wiley Interscience, 1978
[3] Fourier–Mukai Transforms in Algebraic Geometry, Oxford Math. Monographs, Oxford University Press, 2006
Cited by Sources:
Comments - Policy