[Solutions périodiques d'un système discret prédateur–proie du temps avec des réponses fonctionnelles monotones]
Dans cette Note, on donne de nouvelles conditions suffisantes d'existence d'une solution périodique d'un système discret non autonome prédateur–proie, dépendant du temps avec condition semi-finale et pour différentes réponses fonctionnelles. Dans les résultats obtenus, pour des réponses fonctionnelles monotones majorées par des polynômes sur
In this Note, sharp sufficient conditions for the existence of periodic solutions of a nonautonomous discrete time semi-ratio-dependent predator–prey system with functional responses are derived. In our results this system with any monotone functional response bounded by polynomials in
Accepté le :
Publié le :
Mostafa Fazly 1 ; Mahmoud Hesaaraki 1
@article{CRMATH_2007__345_4_199_0, author = {Mostafa Fazly and Mahmoud Hesaaraki}, title = {Periodic solutions for a discrete time predator{\textendash}prey system with monotone functional responses}, journal = {Comptes Rendus. Math\'ematique}, pages = {199--202}, publisher = {Elsevier}, volume = {345}, number = {4}, year = {2007}, doi = {10.1016/j.crma.2007.06.021}, language = {en}, }
TY - JOUR AU - Mostafa Fazly AU - Mahmoud Hesaaraki TI - Periodic solutions for a discrete time predator–prey system with monotone functional responses JO - Comptes Rendus. Mathématique PY - 2007 SP - 199 EP - 202 VL - 345 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2007.06.021 LA - en ID - CRMATH_2007__345_4_199_0 ER -
Mostafa Fazly; Mahmoud Hesaaraki. Periodic solutions for a discrete time predator–prey system with monotone functional responses. Comptes Rendus. Mathématique, Volume 345 (2007) no. 4, pp. 199-202. doi : 10.1016/j.crma.2007.06.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.06.021/
[1] Existence of periodic solutions in predator–prey and competition dynamic systems, Nonlinear Anal.: Real World Appl., Volume 7 (2006), pp. 1193-1204
[2] Periodic solutions of a class of nonautonomous discrete time semi-ratio-dependent predator–prey systems, Discrete Contin. Dyn. Syst. Ser. B, Volume 4 (2004) no. 3, pp. 563-574
[3] Periodic solutions for predator–prey systems with Beddington–DeAngelis functional response on time scales, Nonlinear Anal.: Real World Appl. (2007) | DOI
[4] Deterministic Mathematical Models in Population Ecology, Monograph Textbooks Pure Applied Math., vol. 57, Marcel Dekker, New York, 1980
[5] Coincidence Degree and Non-Linear Differential Equations, Springer, Berlin, 1977
[6] Dynamics of a class of nonautonomous semi-ratio-dependent predator–prey systems with functional responses, J. Math. Anal. Appl., Volume 278 (2003), pp. 443-471
- Theoretical and numerical bifurcation analysis of a predator–prey system with ratio-dependence, Mathematical Sciences, Volume 18 (2024) no. 2, p. 205 | DOI:10.1007/s40096-022-00494-w
- Analyzing Predator-Prey Interaction in Chaotic and Bifurcating Environments, Chaos Theory and Applications, Volume 5 (2023) no. 3, p. 207 | DOI:10.51537/chaos.1357543
- Transcritical Bifurcation and Flip Bifurcation of a New Discrete Ratio-Dependent Predator-Prey System, Qualitative Theory of Dynamical Systems, Volume 21 (2022) no. 4 | DOI:10.1007/s12346-022-00646-2
- Flip bifurcation and Neimark–Sacker bifurcation in a discrete predator–prey model with harvesting, International Journal of Biomathematics, Volume 13 (2020) no. 01, p. 1950093 | DOI:10.1142/s1793524519500931
- The Bifurcation of Two Invariant Closed Curves in a Discrete Model, Discrete Dynamics in Nature and Society, Volume 2018 (2018), p. 1 | DOI:10.1155/2018/1613709
- Stability for a New Discrete Ratio-Dependent Predator–Prey System, Qualitative Theory of Dynamical Systems, Volume 17 (2018) no. 1, p. 189 | DOI:10.1007/s12346-017-0228-1
- Periodicity in a neutral predator-prey system with monotone functional responses, Advances in Difference Equations, Volume 2017 (2017) no. 1 | DOI:10.1186/s13662-017-1101-x
- Neimark-Sacker bifurcation of a two-dimensional discrete-time predator-prey model, SpringerPlus, Volume 5 (2016) no. 1 | DOI:10.1186/s40064-015-1618-y
- Permanence and global attractivity in a discrete Lotka-Volterra predator-prey model with delays, Advances in Difference Equations, Volume 2014 (2014) no. 1 | DOI:10.1186/1687-1847-2014-208
- Stochastic dynamics for the solutions of a modified Holling–Tanner model with random perturbation, International Journal of Mathematics, Volume 25 (2014) no. 11, p. 1450105 | DOI:10.1142/s0129167x14501055
- Dynamics in a Lotka-Volterra Predator-Prey Model with Time-Varying Delays, Abstract and Applied Analysis, Volume 2013 (2013), p. 1 | DOI:10.1155/2013/956703
- GLOBAL ASYMPTOTIC STABILITY FOR A TWO-SPECIES DISCRETE RATIO-DEPENDENT PREDATOR–PREY SYSTEM, International Journal of Biomathematics, Volume 06 (2013) no. 01, p. 1250064 | DOI:10.1142/s1793524512500647
- ON THE PERIODICITY AND GLOBAL STABILITY FOR A DISCRETE DELAYED PREDATOR–PREY MODEL, International Journal of Mathematics, Volume 24 (2013) no. 10, p. 1350086 | DOI:10.1142/s0129167x13500869
- Bifurcations and stability of a discrete singular bioeconomic system, Nonlinear Dynamics, Volume 73 (2013) no. 3, p. 1813 | DOI:10.1007/s11071-013-0906-8
- Periodic Solutions for a Semi‐Ratio‐Dependent Predator‐Prey System with Delays on Time Scales, Discrete Dynamics in Nature and Society, Volume 2012 (2012) no. 1 | DOI:10.1155/2012/928704
- Uniformly Strong Persistence for a Delayed Predator‐Prey Model, Journal of Applied Mathematics, Volume 2012 (2012) no. 1 | DOI:10.1155/2012/358918
- On the existence and stability of a unique almost periodic sequence solution in discrete predator–prey models with time delays, Applied Mathematical Modelling, Volume 35 (2011) no. 11, p. 5448 | DOI:10.1016/j.apm.2011.04.034
- Multiple periodic solutions for impulsive Gause-type ratio-dependent predator–prey systems with non-monotonic numerical responses, Applied Mathematics and Computation, Volume 217 (2011) no. 18, p. 7478 | DOI:10.1016/j.amc.2011.02.049
- Analysis of stability for a discrete ratio-dependent predator-prey system, Indian Journal of Pure and Applied Mathematics, Volume 42 (2011) no. 1, p. 1 | DOI:10.1007/s13226-011-0001-0
- Existence of Periodic Solutions in a Discrete Predator‐Prey System withBeddington‐DeAngelis Functional Responses, International Journal of Mathematics and Mathematical Sciences, Volume 2011 (2011) no. 1 | DOI:10.1155/2011/970763
- A note on the existence of periodic solutions in discrete predator–prey models, Applied Mathematical Modelling, Volume 34 (2010) no. 9, p. 2477 | DOI:10.1016/j.apm.2009.11.012
- A note on periodic solutions for semi-ratio-dependent predator-prey systems, Applied Mathematics-A Journal of Chinese Universities, Volume 25 (2010) no. 1, p. 1 | DOI:10.1007/s11766-010-2106-3
- Permanence and periodic solutions of delayed predator-prey system with impulse, Applied Mathematics-A Journal of Chinese Universities, Volume 25 (2010) no. 3, p. 264 | DOI:10.1007/s11766-010-2189-x
- Positive periodic solutions for a generalized two-species semi-ratio-dependent predator–prey system in a two-patch environment, Mathematical and Computer Modelling, Volume 52 (2010) no. 1-2, p. 361 | DOI:10.1016/j.mcm.2010.03.004
- Permanence of a Discrete Nonlinear Prey‐Competition System with Delays, Discrete Dynamics in Nature and Society, Volume 2009 (2009) no. 1 | DOI:10.1155/2009/605254
- Periodic solutions for impulsive semi-ratio-dependent predator–prey systems, Nonlinear Analysis: Real World Applications, Volume 10 (2009) no. 5, p. 3266 | DOI:10.1016/j.nonrwa.2008.10.022
Cité par 26 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier