Comptes Rendus
Ordinary Differential Equations
Periodic solutions for a discrete time predator–prey system with monotone functional responses
[Solutions périodiques d'un système discret prédateur–proie du temps avec des réponses fonctionnelles monotones]
Comptes Rendus. Mathématique, Volume 345 (2007) no. 4, pp. 199-202.

Dans cette Note, on donne de nouvelles conditions suffisantes d'existence d'une solution périodique d'un système discret non autonome prédateur–proie, dépendant du temps avec condition semi-finale et pour différentes réponses fonctionnelles. Dans les résultats obtenus, pour des réponses fonctionnelles monotones majorées par des polynômes sur R+, le système a toujours au moins une solution ω-périodique. En particulier, pour les réponses fonctionnelles les plus utilisées – Michaelis–Menten, type-II et III de Holling, sigmoïde, Ivlev et d'autres fonctions monotones – le système a toujours une solution ω-périodique.

In this Note, sharp sufficient conditions for the existence of periodic solutions of a nonautonomous discrete time semi-ratio-dependent predator–prey system with functional responses are derived. In our results this system with any monotone functional response bounded by polynomials in R+, always has at least one ω-periodic solution. In particular, this system with the most popular functional responses Michaelis–Menten, Holling type-II and III, sigmoidal, Ivlev and some other monotone response functions, always has at least one ω-periodic solution.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.06.021

Mostafa Fazly 1 ; Mahmoud Hesaaraki 1

1 Department of Mathematical Sciences, Sharif University of Technology, P.O. Box 11365-9415, Azadi Ave., Tehran, Iran
@article{CRMATH_2007__345_4_199_0,
     author = {Mostafa Fazly and Mahmoud Hesaaraki},
     title = {Periodic solutions for a discrete time predator{\textendash}prey system with monotone functional responses},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {199--202},
     publisher = {Elsevier},
     volume = {345},
     number = {4},
     year = {2007},
     doi = {10.1016/j.crma.2007.06.021},
     language = {en},
}
TY  - JOUR
AU  - Mostafa Fazly
AU  - Mahmoud Hesaaraki
TI  - Periodic solutions for a discrete time predator–prey system with monotone functional responses
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 199
EP  - 202
VL  - 345
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crma.2007.06.021
LA  - en
ID  - CRMATH_2007__345_4_199_0
ER  - 
%0 Journal Article
%A Mostafa Fazly
%A Mahmoud Hesaaraki
%T Periodic solutions for a discrete time predator–prey system with monotone functional responses
%J Comptes Rendus. Mathématique
%D 2007
%P 199-202
%V 345
%N 4
%I Elsevier
%R 10.1016/j.crma.2007.06.021
%G en
%F CRMATH_2007__345_4_199_0
Mostafa Fazly; Mahmoud Hesaaraki. Periodic solutions for a discrete time predator–prey system with monotone functional responses. Comptes Rendus. Mathématique, Volume 345 (2007) no. 4, pp. 199-202. doi : 10.1016/j.crma.2007.06.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.06.021/

[1] M. Bohner; M. Fan; J. Zhang Existence of periodic solutions in predator–prey and competition dynamic systems, Nonlinear Anal.: Real World Appl., Volume 7 (2006), pp. 1193-1204

[2] M. Fan; Q. Wang Periodic solutions of a class of nonautonomous discrete time semi-ratio-dependent predator–prey systems, Discrete Contin. Dyn. Syst. Ser. B, Volume 4 (2004) no. 3, pp. 563-574

[3] M. Fazly; M. Hesaaraki Periodic solutions for predator–prey systems with Beddington–DeAngelis functional response on time scales, Nonlinear Anal.: Real World Appl. (2007) | DOI

[4] H.I. Freedman Deterministic Mathematical Models in Population Ecology, Monograph Textbooks Pure Applied Math., vol. 57, Marcel Dekker, New York, 1980

[5] R.E. Gaines; J.L. Mawhin Coincidence Degree and Non-Linear Differential Equations, Springer, Berlin, 1977

[6] Q. Wang; M. Fan; K. Wang Dynamics of a class of nonautonomous semi-ratio-dependent predator–prey systems with functional responses, J. Math. Anal. Appl., Volume 278 (2003), pp. 443-471

  • Z. Eskandari; Z. Avazzadeh; R. Khoshsiar Ghaziani Theoretical and numerical bifurcation analysis of a predator–prey system with ratio-dependence, Mathematical Sciences, Volume 18 (2024) no. 2, p. 205 | DOI:10.1007/s40096-022-00494-w
  • Ansar ABBAS; Abdul KHALİQ Analyzing Predator-Prey Interaction in Chaotic and Bifurcating Environments, Chaos Theory and Applications, Volume 5 (2023) no. 3, p. 207 | DOI:10.51537/chaos.1357543
  • Xianyi Li; Yuqing Liu Transcritical Bifurcation and Flip Bifurcation of a New Discrete Ratio-Dependent Predator-Prey System, Qualitative Theory of Dynamical Systems, Volume 21 (2022) no. 4 | DOI:10.1007/s12346-022-00646-2
  • Wei Liu; Yaolin Jiang Flip bifurcation and Neimark–Sacker bifurcation in a discrete predator–prey model with harvesting, International Journal of Biomathematics, Volume 13 (2020) no. 01, p. 1950093 | DOI:10.1142/s1793524519500931
  • Yingying Zhang; Yicang Zhou The Bifurcation of Two Invariant Closed Curves in a Discrete Model, Discrete Dynamics in Nature and Society, Volume 2018 (2018), p. 1 | DOI:10.1155/2018/1613709
  • Xiang-Lai Zhuo; Feng-Xue Zhang Stability for a New Discrete Ratio-Dependent Predator–Prey System, Qualitative Theory of Dynamical Systems, Volume 17 (2018) no. 1, p. 189 | DOI:10.1007/s12346-017-0228-1
  • Zhijun Zeng Periodicity in a neutral predator-prey system with monotone functional responses, Advances in Difference Equations, Volume 2017 (2017) no. 1 | DOI:10.1186/s13662-017-1101-x
  • A. Q. Khan Neimark-Sacker bifurcation of a two-dimensional discrete-time predator-prey model, SpringerPlus, Volume 5 (2016) no. 1 | DOI:10.1186/s40064-015-1618-y
  • Changjin Xu; Yusen Wu; Lin Lu Permanence and global attractivity in a discrete Lotka-Volterra predator-prey model with delays, Advances in Difference Equations, Volume 2014 (2014) no. 1 | DOI:10.1186/1687-1847-2014-208
  • Zhenjie Liu Stochastic dynamics for the solutions of a modified Holling–Tanner model with random perturbation, International Journal of Mathematics, Volume 25 (2014) no. 11, p. 1450105 | DOI:10.1142/s0129167x14501055
  • Changjin Xu; Yusen Wu Dynamics in a Lotka-Volterra Predator-Prey Model with Time-Varying Delays, Abstract and Applied Analysis, Volume 2013 (2013), p. 1 | DOI:10.1155/2013/956703
  • XIANGLAI ZHUO GLOBAL ASYMPTOTIC STABILITY FOR A TWO-SPECIES DISCRETE RATIO-DEPENDENT PREDATOR–PREY SYSTEM, International Journal of Biomathematics, Volume 06 (2013) no. 01, p. 1250064 | DOI:10.1142/s1793524512500647
  • CHANGJIN XU; PEILUAN LI ON THE PERIODICITY AND GLOBAL STABILITY FOR A DISCRETE DELAYED PREDATOR–PREY MODEL, International Journal of Mathematics, Volume 24 (2013) no. 10, p. 1350086 | DOI:10.1142/s0129167x13500869
  • Xueying Wu; Boshan Chen Bifurcations and stability of a discrete singular bioeconomic system, Nonlinear Dynamics, Volume 73 (2013) no. 3, p. 1813 | DOI:10.1007/s11071-013-0906-8
  • Xiaoquan Ding; Gaifang Zhao; Ugurhan Mugan Periodic Solutions for a Semi‐Ratio‐Dependent Predator‐Prey System with Delays on Time Scales, Discrete Dynamics in Nature and Society, Volume 2012 (2012) no. 1 | DOI:10.1155/2012/928704
  • Changjin Xu; Yuanfu Shao; Peiluan Li; Wan-Tong Li Uniformly Strong Persistence for a Delayed Predator‐Prey Model, Journal of Applied Mathematics, Volume 2012 (2012) no. 1 | DOI:10.1155/2012/358918
  • Yongkun Li; Tianwei Zhang; Yuan Ye On the existence and stability of a unique almost periodic sequence solution in discrete predator–prey models with time delays, Applied Mathematical Modelling, Volume 35 (2011) no. 11, p. 5448 | DOI:10.1016/j.apm.2011.04.034
  • Binxiang Dai; Ying Li; Zhenguo Luo Multiple periodic solutions for impulsive Gause-type ratio-dependent predator–prey systems with non-monotonic numerical responses, Applied Mathematics and Computation, Volume 217 (2011) no. 18, p. 7478 | DOI:10.1016/j.amc.2011.02.049
  • Guangye Chen; Zhidong Teng; Zengyun Hu Analysis of stability for a discrete ratio-dependent predator-prey system, Indian Journal of Pure and Applied Mathematics, Volume 42 (2011) no. 1, p. 1 | DOI:10.1007/s13226-011-0001-0
  • Changjin Xu; Maoxin Liao; Aloys Krieg Existence of Periodic Solutions in a Discrete Predator‐Prey System withBeddington‐DeAngelis Functional Responses, International Journal of Mathematics and Mathematical Sciences, Volume 2011 (2011) no. 1 | DOI:10.1155/2011/970763
  • Xiuxiang Liu A note on the existence of periodic solutions in discrete predator–prey models, Applied Mathematical Modelling, Volume 34 (2010) no. 9, p. 2477 | DOI:10.1016/j.apm.2009.11.012
  • Xiu-xiang Liu A note on periodic solutions for semi-ratio-dependent predator-prey systems, Applied Mathematics-A Journal of Chinese Universities, Volume 25 (2010) no. 1, p. 1 | DOI:10.1007/s11766-010-2106-3
  • Hong-bo Shi Permanence and periodic solutions of delayed predator-prey system with impulse, Applied Mathematics-A Journal of Chinese Universities, Volume 25 (2010) no. 3, p. 264 | DOI:10.1007/s11766-010-2189-x
  • Xiaoquan Ding; Jifa Jiang Positive periodic solutions for a generalized two-species semi-ratio-dependent predator–prey system in a two-patch environment, Mathematical and Computer Modelling, Volume 52 (2010) no. 1-2, p. 361 | DOI:10.1016/j.mcm.2010.03.004
  • Hongying Lu; Xue-Zhong He Permanence of a Discrete Nonlinear Prey‐Competition System with Delays, Discrete Dynamics in Nature and Society, Volume 2009 (2009) no. 1 | DOI:10.1155/2009/605254
  • Xiuxiang Liu; Lihong Huang Periodic solutions for impulsive semi-ratio-dependent predator–prey systems, Nonlinear Analysis: Real World Applications, Volume 10 (2009) no. 5, p. 3266 | DOI:10.1016/j.nonrwa.2008.10.022

Cité par 26 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: