In this Note, sharp sufficient conditions for the existence of periodic solutions of a nonautonomous discrete time semi-ratio-dependent predator–prey system with functional responses are derived. In our results this system with any monotone functional response bounded by polynomials in , always has at least one ω-periodic solution. In particular, this system with the most popular functional responses Michaelis–Menten, Holling type-II and III, sigmoidal, Ivlev and some other monotone response functions, always has at least one ω-periodic solution.
Dans cette Note, on donne de nouvelles conditions suffisantes d'existence d'une solution périodique d'un système discret non autonome prédateur–proie, dépendant du temps avec condition semi-finale et pour différentes réponses fonctionnelles. Dans les résultats obtenus, pour des réponses fonctionnelles monotones majorées par des polynômes sur , le système a toujours au moins une solution ω-périodique. En particulier, pour les réponses fonctionnelles les plus utilisées – Michaelis–Menten, type-II et III de Holling, sigmoïde, Ivlev et d'autres fonctions monotones – le système a toujours une solution ω-périodique.
Accepted:
Published online:
Mostafa Fazly 1; Mahmoud Hesaaraki 1
@article{CRMATH_2007__345_4_199_0, author = {Mostafa Fazly and Mahmoud Hesaaraki}, title = {Periodic solutions for a discrete time predator{\textendash}prey system with monotone functional responses}, journal = {Comptes Rendus. Math\'ematique}, pages = {199--202}, publisher = {Elsevier}, volume = {345}, number = {4}, year = {2007}, doi = {10.1016/j.crma.2007.06.021}, language = {en}, }
TY - JOUR AU - Mostafa Fazly AU - Mahmoud Hesaaraki TI - Periodic solutions for a discrete time predator–prey system with monotone functional responses JO - Comptes Rendus. Mathématique PY - 2007 SP - 199 EP - 202 VL - 345 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2007.06.021 LA - en ID - CRMATH_2007__345_4_199_0 ER -
Mostafa Fazly; Mahmoud Hesaaraki. Periodic solutions for a discrete time predator–prey system with monotone functional responses. Comptes Rendus. Mathématique, Volume 345 (2007) no. 4, pp. 199-202. doi : 10.1016/j.crma.2007.06.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.06.021/
[1] Existence of periodic solutions in predator–prey and competition dynamic systems, Nonlinear Anal.: Real World Appl., Volume 7 (2006), pp. 1193-1204
[2] Periodic solutions of a class of nonautonomous discrete time semi-ratio-dependent predator–prey systems, Discrete Contin. Dyn. Syst. Ser. B, Volume 4 (2004) no. 3, pp. 563-574
[3] Periodic solutions for predator–prey systems with Beddington–DeAngelis functional response on time scales, Nonlinear Anal.: Real World Appl. (2007) | DOI
[4] Deterministic Mathematical Models in Population Ecology, Monograph Textbooks Pure Applied Math., vol. 57, Marcel Dekker, New York, 1980
[5] Coincidence Degree and Non-Linear Differential Equations, Springer, Berlin, 1977
[6] Dynamics of a class of nonautonomous semi-ratio-dependent predator–prey systems with functional responses, J. Math. Anal. Appl., Volume 278 (2003), pp. 443-471
Cited by Sources:
Comments - Policy