Comptes Rendus
Équations aux dérivées partielles/Analyse numérique
Sur un modèle non-linéaire pour le débruitage de l'image
Comptes Rendus. Mathématique, Volume 345 (2007) no. 8, pp. 425-429.

Ce travail porte sur l'étude mathématique d'un modèle évolutif d'équations aux dérivées partielles non-linéaires qui sera utilisé pour le débruitage de l'image. L'existence et l'unicité de la solution sont établies, le modèle est ensuite testé numériquement.

Le rapport du signal à bruit (SNR) est utilisé pour estimer la qualité des images restaurées.

This work deals with a mathematical study for a proposed non-linear evolution partial differential equations model for image processing. The existence and the uniqueness of the solution are established, the model is numerically tested.

The Signal to Noise Ratio (SNR) number is used to estimate the quality of the restored images.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2007.09.009

R. Aboulaich 1 ; S. Boujena 2 ; E. El Guarmah 1

1 LERMA, École Mohammadia d'Ingénieurs, Université Mohamed V, avenue Ibn Sina, PB 765 Agdal, Rabat, Maroc
2 Département de mathématiques et informatique, Faculté des Sciences Ain Chock, Km8 Route El Jadida, BP 5366 Maârif, Casablanca, Maroc
@article{CRMATH_2007__345_8_425_0,
     author = {R. Aboulaich and S. Boujena and E. El Guarmah},
     title = {Sur un mod\`ele non-lin\'eaire pour le d\'ebruitage de l'image},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {425--429},
     publisher = {Elsevier},
     volume = {345},
     number = {8},
     year = {2007},
     doi = {10.1016/j.crma.2007.09.009},
     language = {fr},
}
TY  - JOUR
AU  - R. Aboulaich
AU  - S. Boujena
AU  - E. El Guarmah
TI  - Sur un modèle non-linéaire pour le débruitage de l'image
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 425
EP  - 429
VL  - 345
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2007.09.009
LA  - fr
ID  - CRMATH_2007__345_8_425_0
ER  - 
%0 Journal Article
%A R. Aboulaich
%A S. Boujena
%A E. El Guarmah
%T Sur un modèle non-linéaire pour le débruitage de l'image
%J Comptes Rendus. Mathématique
%D 2007
%P 425-429
%V 345
%N 8
%I Elsevier
%R 10.1016/j.crma.2007.09.009
%G fr
%F CRMATH_2007__345_8_425_0
R. Aboulaich; S. Boujena; E. El Guarmah. Sur un modèle non-linéaire pour le débruitage de l'image. Comptes Rendus. Mathématique, Volume 345 (2007) no. 8, pp. 425-429. doi : 10.1016/j.crma.2007.09.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.09.009/

[1] R. Aboulaich, D. Meskine, A. Souissi, New diffusion models in image processing, Computers and Mathematics with Applications (2007), in press

[2] L. Alvarez; P.-L. Lions; J.-M. Morel Image selective smoothing and edge detection by nonlinear diffusion. II, SIAM Journal on Numerical Analysis, Volume 29 (1992) no. 3, pp. 845-866

[3] G. Aubert; P. Kornprobst Mathematical Problems in Image Processing, Springer-Verlag, New York, 2002

[4] S. Boujena, Etude d'une classe de fluides non newtoniens, les fluides newtoniens généralisés, thèse de 3ème cycle, Université Pierre et Marie Curie-Paris 6, 1986

[5] F. Catté; P.L. Lions; J.M. Morel; T. Coll Image selective smoothing and edge detection by nonlinear, SIAM Journal on Numerical Analysis, Volume 29 (1992), pp. 182-193

[6] J. Duvaut; J.L. Lions Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972

[7] O.A. Ladyskenskaya Mathematical Problems in the Dynamic of Viscous Incompressible Fluid, Gordon and Breach, New York, 1969

[8] J.L. Lions Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod et Gauthier Villard, Paris, 1969

[9] V.G. Litvinov The Motion of a Non Linearly Viscous Fluid, Nank, Mouscou, Russe, 1982

[10] S. Osher; L. Rudin Feature-oriented image enhancing using shock filter, SIAM Journal on Numerical Analysis, Volume 27 (1990) no. 4, pp. 919-940

[11] S. Osher; L. Rudin; E. Fatemi Non linear total variation based noise removal algorithms, Physica D, Volume 60 (1992), pp. 259-268

[12] P. Perona; J. Malik Scale-espace and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 12 (1990), pp. 629-639

  • Babar Sultan; Mehvish Sultan; Aziz Khan; Thabet Abdeljawad Boundedness of commutators of variable Marcinkiewicz fractional integral operator in grand variable Herz spaces, Journal of Inequalities and Applications, Volume 2024 (2024), p. 16 (Id/No 93) | DOI:10.1186/s13660-024-03169-3 | Zbl:1546.45004
  • Mehvish Sultan; Babar Sultan Estimate for the intrinsic square function on p-adic Herz spaces with variable exponent, p-Adic Numbers, Ultrametric Analysis, and Applications, Volume 16 (2024) no. 1, pp. 82-93 | DOI:10.1134/s2070046624010072 | Zbl:1540.42043
  • Mohammed Said Souid; Ahmed Refice; Kanokwan Sitthithakerngkiet Stability of p(·)-Integrable Solutions for Fractional Boundary Value Problem via Piecewise Constant Functions, Fractal and Fractional, Volume 7 (2023) no. 2, p. 198 | DOI:10.3390/fractalfract7020198
  • Ahmed Refice; Mohammed Said Souid; Juan L. G. Guirao; Hatira Günerhan Terminal value problem for Riemann‐Liouville fractional differential equation in the variable exponent Lebesgue space Lp(.)Lp(.), Mathematical Methods in the Applied Sciences (2023) | DOI:10.1002/mma.8964
  • Humberto Rafeiro; Stefan Samko Coincidence of variable exponent Herz spaces with variable exponent Morrey type spaces and boundedness of sublinear operators in these spaces, Potential Analysis, Volume 56 (2022) no. 3, pp. 437-457 | DOI:10.1007/s11118-020-09891-z | Zbl:1494.46028
  • Leonardo Fabio Chacón-Cortés; Humberto Rafeiro Fractional operators in p-adic variable exponent Lebesgue spaces and application to p-adic derivative, Journal of Function Spaces, Volume 2021 (2021), p. 9 (Id/No 3096701) | DOI:10.1155/2021/3096701 | Zbl:1492.47106
  • Gerardo A. Chacón; Gerardo R. Chacón Variable Exponent Spaces of Analytic Functions, Advances in Complex Analysis and Applications (2020) | DOI:10.5772/intechopen.92617
  • K. Bellaj; S. Boujena; E. El Guarmah An improved approach for image segmentation and three-dimensional reconstruction, Discontinuity, Nonlinearity, and Complexity, Volume 9 (2020) no. 2, pp. 199-215 | DOI:10.5890/dnc.2020.06.003 | Zbl:1493.94004
  • Yang-Jin Cheng; Muzhou Hou; Juan Wang An improved optimal trigonometric ELM algorithm for numerical solution to ruin probability of Erlang(2) risk model, Multimedia Tools and Applications, Volume 79 (2020) no. 41-42, p. 30235 | DOI:10.1007/s11042-020-09382-8
  • Leonardo Fabio Chacón-Cortés; Humberto Rafeiro Variable exponent Lebesgue spaces and Hardy-Littlewood maximal function on p-adic numbers, p-Adic Numbers, Ultrametric Analysis, and Applications, Volume 12 (2020) no. 2, pp. 90-111 | DOI:10.1134/s2070046620020028 | Zbl:1451.42025
  • Gerardo R. Chacón; Humberto Rafeiro; Juan Camilo Vallejo Carleson measures for variable exponent Bergman spaces, Complex Analysis and Operator Theory, Volume 11 (2017) no. 7, pp. 1623-1638 | DOI:10.1007/s11785-016-0573-0 | Zbl:1387.30081
  • Humberto Rafeiro; Stefan Samko Maximal operator with rough kernel in variable Musielak-Morrey-Orlicz type spaces, variable Herz spaces and grand variable Lebesgue spaces, Integral Equations and Operator Theory, Volume 89 (2017) no. 1, pp. 111-124 | DOI:10.1007/s00020-017-2398-2 | Zbl:1387.42020
  • René Erlín Castillo; Oscar Mauricio Guzmán; Humberto Rafeiro Nemytskii operator in Riesz-bounded variation spaces with variable exponent, Mediterranean Journal of Mathematics, Volume 14 (2017) no. 1, p. 11 (Id/No 2) | DOI:10.1007/s00009-016-0801-x | Zbl:1476.47039
  • Humberto Rafeiro; Stefan Samko On maximal and potential operators with rough kernels in variable exponent spaces, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Serie IX. Rendiconti Lincei. Matematica e Applicazioni, Volume 27 (2016) no. 3, pp. 309-325 | DOI:10.4171/rlm/736 | Zbl:1344.42016
  • Gerardo R. Chacón; Humberto Rafeiro Toeplitz operators on variable exponent Bergman spaces, Mediterranean Journal of Mathematics, Volume 13 (2016) no. 5, pp. 3525-3536 | DOI:10.1007/s00009-016-0701-0 | Zbl:1354.30049
  • René E. Castillo; Oscar Mauricio Guzmán; Humberto Rafeiro Variable exponent bounded variation spaces in the Riesz sense, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 132 (2016), pp. 173-182 | DOI:10.1016/j.na.2015.10.019 | Zbl:1334.26015
  • Gerardo R. Chacón; Renato Colucci; Humberto Rafeiro; Andrés Vargas On minimization of a non-convex functional in variable exponent spaces, International Journal of Mathematics, Volume 25 (2014) no. 1, p. 19 (Id/No 1450011) | DOI:10.1142/s0129167x14500116 | Zbl:1287.49004
  • René Erlín Castillo; Nelson Merentes; Humberto Rafeiro Bounded variation spaces with p-variable, Mediterranean Journal of Mathematics, Volume 11 (2014) no. 4, pp. 1069-1079 | DOI:10.1007/s00009-013-0342-5 | Zbl:1307.26008
  • Gerardo R. Chacón; Humberto Rafeiro Variable exponent Bergman spaces, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 105 (2014), pp. 41-49 | DOI:10.1016/j.na.2014.04.001 | Zbl:1288.30059
  • David V. Cruz-Uribe; Alberto Fiorenza Introduction, Variable Lebesgue Spaces (2013), p. 1 | DOI:10.1007/978-3-0348-0548-3_1
  • R. Aboulaich; S. Boujena; E. El Guarmah A nonlinear parabolic model in processing of medical image, Mathematical Modelling of Natural Phenomena, Volume 3 (2008) no. 6, pp. 131-145 | DOI:10.1051/mmnp:2008084 | Zbl:1337.92121

Cité par 21 documents. Sources : Crossref, zbMATH

Commentaires - Politique