Ce travail porte sur l'étude mathématique d'un modèle évolutif d'équations aux dérivées partielles non-linéaires qui sera utilisé pour le débruitage de l'image. L'existence et l'unicité de la solution sont établies, le modèle est ensuite testé numériquement.
Le rapport du signal à bruit (SNR) est utilisé pour estimer la qualité des images restaurées.
This work deals with a mathematical study for a proposed non-linear evolution partial differential equations model for image processing. The existence and the uniqueness of the solution are established, the model is numerically tested.
The Signal to Noise Ratio (SNR) number is used to estimate the quality of the restored images.
Accepté le :
Publié le :
R. Aboulaich 1 ; S. Boujena 2 ; E. El Guarmah 1
@article{CRMATH_2007__345_8_425_0, author = {R. Aboulaich and S. Boujena and E. El Guarmah}, title = {Sur un mod\`ele non-lin\'eaire pour le d\'ebruitage de l'image}, journal = {Comptes Rendus. Math\'ematique}, pages = {425--429}, publisher = {Elsevier}, volume = {345}, number = {8}, year = {2007}, doi = {10.1016/j.crma.2007.09.009}, language = {fr}, }
R. Aboulaich; S. Boujena; E. El Guarmah. Sur un modèle non-linéaire pour le débruitage de l'image. Comptes Rendus. Mathématique, Volume 345 (2007) no. 8, pp. 425-429. doi : 10.1016/j.crma.2007.09.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.09.009/
[1] R. Aboulaich, D. Meskine, A. Souissi, New diffusion models in image processing, Computers and Mathematics with Applications (2007), in press
[2] Image selective smoothing and edge detection by nonlinear diffusion. II, SIAM Journal on Numerical Analysis, Volume 29 (1992) no. 3, pp. 845-866
[3] Mathematical Problems in Image Processing, Springer-Verlag, New York, 2002
[4] S. Boujena, Etude d'une classe de fluides non newtoniens, les fluides newtoniens généralisés, thèse de 3ème cycle, Université Pierre et Marie Curie-Paris 6, 1986
[5] Image selective smoothing and edge detection by nonlinear, SIAM Journal on Numerical Analysis, Volume 29 (1992), pp. 182-193
[6] Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972
[7] Mathematical Problems in the Dynamic of Viscous Incompressible Fluid, Gordon and Breach, New York, 1969
[8] Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod et Gauthier Villard, Paris, 1969
[9] The Motion of a Non Linearly Viscous Fluid, Nank, Mouscou, Russe, 1982
[10] Feature-oriented image enhancing using shock filter, SIAM Journal on Numerical Analysis, Volume 27 (1990) no. 4, pp. 919-940
[11] Non linear total variation based noise removal algorithms, Physica D, Volume 60 (1992), pp. 259-268
[12] Scale-espace and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 12 (1990), pp. 629-639
- Boundedness of commutators of variable Marcinkiewicz fractional integral operator in grand variable Herz spaces, Journal of Inequalities and Applications, Volume 2024 (2024), p. 16 (Id/No 93) | DOI:10.1186/s13660-024-03169-3 | Zbl:1546.45004
- Estimate for the intrinsic square function on
-adic Herz spaces with variable exponent, -Adic Numbers, Ultrametric Analysis, and Applications, Volume 16 (2024) no. 1, pp. 82-93 | DOI:10.1134/s2070046624010072 | Zbl:1540.42043 - Stability of p(·)-Integrable Solutions for Fractional Boundary Value Problem via Piecewise Constant Functions, Fractal and Fractional, Volume 7 (2023) no. 2, p. 198 | DOI:10.3390/fractalfract7020198
- Terminal value problem for Riemann‐Liouville fractional differential equation in the variable exponent Lebesgue space Lp(.)
, Mathematical Methods in the Applied Sciences (2023) | DOI:10.1002/mma.8964 - Coincidence of variable exponent Herz spaces with variable exponent Morrey type spaces and boundedness of sublinear operators in these spaces, Potential Analysis, Volume 56 (2022) no. 3, pp. 437-457 | DOI:10.1007/s11118-020-09891-z | Zbl:1494.46028
- Fractional operators in
-adic variable exponent Lebesgue spaces and application to -adic derivative, Journal of Function Spaces, Volume 2021 (2021), p. 9 (Id/No 3096701) | DOI:10.1155/2021/3096701 | Zbl:1492.47106 - Variable Exponent Spaces of Analytic Functions, Advances in Complex Analysis and Applications (2020) | DOI:10.5772/intechopen.92617
- An improved approach for image segmentation and three-dimensional reconstruction, Discontinuity, Nonlinearity, and Complexity, Volume 9 (2020) no. 2, pp. 199-215 | DOI:10.5890/dnc.2020.06.003 | Zbl:1493.94004
- An improved optimal trigonometric ELM algorithm for numerical solution to ruin probability of Erlang(2) risk model, Multimedia Tools and Applications, Volume 79 (2020) no. 41-42, p. 30235 | DOI:10.1007/s11042-020-09382-8
- Variable exponent Lebesgue spaces and Hardy-Littlewood maximal function on
-adic numbers, -Adic Numbers, Ultrametric Analysis, and Applications, Volume 12 (2020) no. 2, pp. 90-111 | DOI:10.1134/s2070046620020028 | Zbl:1451.42025 - Carleson measures for variable exponent Bergman spaces, Complex Analysis and Operator Theory, Volume 11 (2017) no. 7, pp. 1623-1638 | DOI:10.1007/s11785-016-0573-0 | Zbl:1387.30081
- Maximal operator with rough kernel in variable Musielak-Morrey-Orlicz type spaces, variable Herz spaces and grand variable Lebesgue spaces, Integral Equations and Operator Theory, Volume 89 (2017) no. 1, pp. 111-124 | DOI:10.1007/s00020-017-2398-2 | Zbl:1387.42020
- Nemytskii operator in Riesz-bounded variation spaces with variable exponent, Mediterranean Journal of Mathematics, Volume 14 (2017) no. 1, p. 11 (Id/No 2) | DOI:10.1007/s00009-016-0801-x | Zbl:1476.47039
- On maximal and potential operators with rough kernels in variable exponent spaces, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Serie IX. Rendiconti Lincei. Matematica e Applicazioni, Volume 27 (2016) no. 3, pp. 309-325 | DOI:10.4171/rlm/736 | Zbl:1344.42016
- Toeplitz operators on variable exponent Bergman spaces, Mediterranean Journal of Mathematics, Volume 13 (2016) no. 5, pp. 3525-3536 | DOI:10.1007/s00009-016-0701-0 | Zbl:1354.30049
- Variable exponent bounded variation spaces in the Riesz sense, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 132 (2016), pp. 173-182 | DOI:10.1016/j.na.2015.10.019 | Zbl:1334.26015
- On minimization of a non-convex functional in variable exponent spaces, International Journal of Mathematics, Volume 25 (2014) no. 1, p. 19 (Id/No 1450011) | DOI:10.1142/s0129167x14500116 | Zbl:1287.49004
- Bounded variation spaces with
-variable, Mediterranean Journal of Mathematics, Volume 11 (2014) no. 4, pp. 1069-1079 | DOI:10.1007/s00009-013-0342-5 | Zbl:1307.26008 - Variable exponent Bergman spaces, Nonlinear Analysis. Theory, Methods Applications. Series A: Theory and Methods, Volume 105 (2014), pp. 41-49 | DOI:10.1016/j.na.2014.04.001 | Zbl:1288.30059
- Introduction, Variable Lebesgue Spaces (2013), p. 1 | DOI:10.1007/978-3-0348-0548-3_1
- A nonlinear parabolic model in processing of medical image, Mathematical Modelling of Natural Phenomena, Volume 3 (2008) no. 6, pp. 131-145 | DOI:10.1051/mmnp:2008084 | Zbl:1337.92121
Cité par 21 documents. Sources : Crossref, zbMATH
Commentaires - Politique