In this Note, we study a σ-finite measure on the space , strongly related to Wiener measure, and we construct a large class of Brownian martingales from . Some of these martingales appear naturally in the study of Brownian penalisations made by B. Roynette, P. Vallois and M. Yor.
Dans cette Note, nous étudions une mesure σ-finie sur l'espace , fortement liée à la mesure de Wiener, et nous construisons une grande classe de martingales browniennes à partir de . Certaines de ces martingales apparaissent naturellement dans l'étude des pénalisations browniennes faite par B. Roynette, P. Vallois et M. Yor.
Accepted:
Published online:
Joseph Najnudel 1; Bernard Roynette 2; Marc Yor 1, 3
@article{CRMATH_2007__345_8_459_0, author = {Joseph Najnudel and Bernard Roynette and Marc Yor}, title = {A remarkable \protect\emph{\ensuremath{\sigma}}-finite measure on $ \mathcal{C}({\mathbf{R}}_{+},\mathbf{R})$ related to many {Brownian} penalisations}, journal = {Comptes Rendus. Math\'ematique}, pages = {459--466}, publisher = {Elsevier}, volume = {345}, number = {8}, year = {2007}, doi = {10.1016/j.crma.2007.09.015}, language = {en}, }
TY - JOUR AU - Joseph Najnudel AU - Bernard Roynette AU - Marc Yor TI - A remarkable σ-finite measure on $ \mathcal{C}({\mathbf{R}}_{+},\mathbf{R})$ related to many Brownian penalisations JO - Comptes Rendus. Mathématique PY - 2007 SP - 459 EP - 466 VL - 345 IS - 8 PB - Elsevier DO - 10.1016/j.crma.2007.09.015 LA - en ID - CRMATH_2007__345_8_459_0 ER -
%0 Journal Article %A Joseph Najnudel %A Bernard Roynette %A Marc Yor %T A remarkable σ-finite measure on $ \mathcal{C}({\mathbf{R}}_{+},\mathbf{R})$ related to many Brownian penalisations %J Comptes Rendus. Mathématique %D 2007 %P 459-466 %V 345 %N 8 %I Elsevier %R 10.1016/j.crma.2007.09.015 %G en %F CRMATH_2007__345_8_459_0
Joseph Najnudel; Bernard Roynette; Marc Yor. A remarkable σ-finite measure on $ \mathcal{C}({\mathbf{R}}_{+},\mathbf{R})$ related to many Brownian penalisations. Comptes Rendus. Mathématique, Volume 345 (2007) no. 8, pp. 459-466. doi : 10.1016/j.crma.2007.09.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.09.015/
[1] Valeurs principales associées aux temps locaux browniens, Bull. Sci. Math. (2), Volume 111 (1987) no. 1, pp. 23-101
[2] J. Najnudel, Temps locaux et pénalisations browniennes, PhD thesis, Université Paris VI, 2007
[3] J. Najnudel, B. Roynette, M. Yor, On a remarkable σ-finite measure W on path space, which rules penalisations for a linear Brownian motion, 2007, in preparation
[4] Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, vol. 293, Springer-Verlag, Berlin, 1999, pp. 493-511
[5] Limiting laws associated with Brownian motion perturbated by normalized exponential weights, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 337 (2003) no. 10, pp. 667-673
[6] Limiting laws for long Brownian bridges perturbed by their one-sided maximum. III, Period. Math. Hungar., Volume 50 (2005) no. 1–2, pp. 247-280
[7] Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time. II, Studia Sci. Math. Hungar., Volume 43 (2006) no. 3, pp. 295-360
[8] Some penalisations of the Wiener measure, Japan. J. Math., Volume 1 (2006), pp. 263-290
[9] B. Roynette, M. Yor, Penalising Brownian paths: Rigorous results and meta-theorems, Laboratoire de Probabilités et Modèles Aléatoires, Prépublication, 2007
Cited by Sources:
Comments - Policy