We state a very general lemma ensuring, at partially elliptic rest points of families of vector fields or transformations, the birth of normally hyperbolic invariant compact manifolds. A few examples follow.
Nous énonçons un lemme très général garantissant, aux points stationnaires partiellement elliptiques de familles de champs de vecteurs ou de transformations, la naissance de variétés compactes invariantes normalement hyperboliques. Quelques exemples suivent.
Accepted:
Published online:
Marc Chaperon 1
@article{CRMATH_2007__345_8_453_0, author = {Marc Chaperon}, title = {Birth control in generalized {Hopf} bifurcations}, journal = {Comptes Rendus. Math\'ematique}, pages = {453--458}, publisher = {Elsevier}, volume = {345}, number = {8}, year = {2007}, doi = {10.1016/j.crma.2007.09.016}, language = {en}, }
Marc Chaperon. Birth control in generalized Hopf bifurcations. Comptes Rendus. Mathématique, Volume 345 (2007) no. 8, pp. 453-458. doi : 10.1016/j.crma.2007.09.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.09.016/
[1] Real quadrics in , complex manifolds and convex polytopes, Acta Math., Volume 197 (2006) no. 1, pp. 53-127
[2] M. Chaperon, S. López de Medrano, Generalized Hopf bifurcations, in press
[3] More compact invariant manifolds appearing in the non-linear coupling of oscillators, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 301-305
[4] Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., Volume 21 (1971), pp. 193-225
[5] Systems of differential equations that are competitive or cooperative. III: Competing species, Nonlinearity, Volume 1 (1988), pp. 51-71
[6] Invariant Manifolds, Lecture Notes in Mathematics, vol. 583, Springer-Verlag, 1977
[7] Stable products of spheres in the non-linear coupling of oscillators or quasi-periodic motions, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2004), pp. 625-629
[8] M. Kammerer-Colin de Verdière, Bifurcations de variétés invariante, Thèse, Université de Bourgogne, décembre 2006
[9] The space of Siegel leaves of a holomorphic vector field, Dynamical Systems, Lecture Notes in Mathematics, vol. 1345, Springer-Verlag, 1988, pp. 233-245
Cited by Sources:
Comments - Policy