Comptes Rendus
Dynamical Systems/Ordinary Differential Equations
Birth control in generalized Hopf bifurcations
Comptes Rendus. Mathématique, Volume 345 (2007) no. 8, pp. 453-458.

We state a very general lemma ensuring, at partially elliptic rest points of families of vector fields or transformations, the birth of normally hyperbolic invariant compact manifolds. A few examples follow.

Nous énonçons un lemme très général garantissant, aux points stationnaires partiellement elliptiques de familles de champs de vecteurs ou de transformations, la naissance de variétés compactes invariantes normalement hyperboliques. Quelques exemples suivent.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.09.016

Marc Chaperon 1

1 Institut de mathématiques de Jussieu & Université Paris 7, UFR de mathématiques, case 7012, 2, place Jussieu, 75251 Paris cedex 05, France
@article{CRMATH_2007__345_8_453_0,
     author = {Marc Chaperon},
     title = {Birth control in generalized {Hopf} bifurcations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {453--458},
     publisher = {Elsevier},
     volume = {345},
     number = {8},
     year = {2007},
     doi = {10.1016/j.crma.2007.09.016},
     language = {en},
}
TY  - JOUR
AU  - Marc Chaperon
TI  - Birth control in generalized Hopf bifurcations
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 453
EP  - 458
VL  - 345
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crma.2007.09.016
LA  - en
ID  - CRMATH_2007__345_8_453_0
ER  - 
%0 Journal Article
%A Marc Chaperon
%T Birth control in generalized Hopf bifurcations
%J Comptes Rendus. Mathématique
%D 2007
%P 453-458
%V 345
%N 8
%I Elsevier
%R 10.1016/j.crma.2007.09.016
%G en
%F CRMATH_2007__345_8_453_0
Marc Chaperon. Birth control in generalized Hopf bifurcations. Comptes Rendus. Mathématique, Volume 345 (2007) no. 8, pp. 453-458. doi : 10.1016/j.crma.2007.09.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.09.016/

[1] F. Bosio; L. Meersseman Real quadrics in Cn, complex manifolds and convex polytopes, Acta Math., Volume 197 (2006) no. 1, pp. 53-127

[2] M. Chaperon, S. López de Medrano, Generalized Hopf bifurcations, in press

[3] M. Chaperon; M. Kammerer-Colin de Verdière; S. López de Medrano More compact invariant manifolds appearing in the non-linear coupling of oscillators, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 301-305

[4] N. Fenichel Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., Volume 21 (1971), pp. 193-225

[5] M.W. Hirsch Systems of differential equations that are competitive or cooperative. III: Competing species, Nonlinearity, Volume 1 (1988), pp. 51-71

[6] M.W. Hirsch; C.C. Pugh; M. Shub Invariant Manifolds, Lecture Notes in Mathematics, vol. 583, Springer-Verlag, 1977

[7] M. Kammerer-Colin de Verdière Stable products of spheres in the non-linear coupling of oscillators or quasi-periodic motions, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2004), pp. 625-629

[8] M. Kammerer-Colin de Verdière, Bifurcations de variétés invariante, Thèse, Université de Bourgogne, décembre 2006

[9] S. López de Medrano The space of Siegel leaves of a holomorphic vector field, Dynamical Systems, Lecture Notes in Mathematics, vol. 1345, Springer-Verlag, 1988, pp. 233-245

Cited by Sources:

Comments - Policy