Comptes Rendus
Mathematical Analysis
The Schur–Szegö composition for hyperbolic polynomials
Comptes Rendus. Mathématique, Volume 345 (2007) no. 9, pp. 483-488.

The composition of Schur–Szegö of the polynomials P(x)=j=0nCnjajxj and Q(x)=j=0nCnjbjxj is defined as PQ=j=0nCnjajbjxj. In the case when P and Q are hyperbolic, i.e. with real roots only, we give the exhaustive answer to the question if the numbers of positive, negative and zero roots of P and Q are known what these numbers can be for PQ.

La composition de Schur–Szegö des polynômes P(x)=j=0nCnjajxj et Q(x)=j=0nCnjbjxj est définie comme PQ=j=0nCnjajbjxj. Dans le cas où P et Q sont hyperboliques, c. à d. n'ayant que des racines réelles, nous donnons la réponse exhaustive à la question si on connaît les nombres de racines positives, négatives et nulles de P et Q, quels peuvent être ces nombres pour PQ.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.10.003

Vladimir Petrov Kostov 1

1 Laboratoire J.-A. Dieudonné, UMR 6621 du CNRS, Université de Nice, parc Valrose, 06108 Nice cedex 2, France
@article{CRMATH_2007__345_9_483_0,
     author = {Vladimir Petrov Kostov},
     title = {The {Schur{\textendash}Szeg\"o} composition for hyperbolic polynomials},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {483--488},
     publisher = {Elsevier},
     volume = {345},
     number = {9},
     year = {2007},
     doi = {10.1016/j.crma.2007.10.003},
     language = {en},
}
TY  - JOUR
AU  - Vladimir Petrov Kostov
TI  - The Schur–Szegö composition for hyperbolic polynomials
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 483
EP  - 488
VL  - 345
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2007.10.003
LA  - en
ID  - CRMATH_2007__345_9_483_0
ER  - 
%0 Journal Article
%A Vladimir Petrov Kostov
%T The Schur–Szegö composition for hyperbolic polynomials
%J Comptes Rendus. Mathématique
%D 2007
%P 483-488
%V 345
%N 9
%I Elsevier
%R 10.1016/j.crma.2007.10.003
%G en
%F CRMATH_2007__345_9_483_0
Vladimir Petrov Kostov. The Schur–Szegö composition for hyperbolic polynomials. Comptes Rendus. Mathématique, Volume 345 (2007) no. 9, pp. 483-488. doi : 10.1016/j.crma.2007.10.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.003/

[1] S. Alkhatib, V.P. Kostov, The Schur–Szegö composition of real polynomials of degree 2, Revista Mat. Complut., in press

[2] V.P. Kostov; B.Z. Shapiro On the Schur–Szegö composition of polynomials, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 81-86

[3] V.P. Kostov; B.Z. Shapiro On arrangements of roots for a real hyperbolic polynomial and its derivatives, Bull. Sci. Math., Volume 126 (2002) no. 1, pp. 45-60

[4] V. Prasolov Polynomials, Algorithms and Computation in Mathematics, vol. 11, Springer-Verlag, Berlin, 2004 (xiv+301 pp)

Cited by Sources:

Research partially supported by Wenner-Grenn Foundation.

Comments - Politique