The composition of Schur–Szegö of the polynomials and is defined as . In the case when P and Q are hyperbolic, i.e. with real roots only, we give the exhaustive answer to the question if the numbers of positive, negative and zero roots of P and Q are known what these numbers can be for .
La composition de Schur–Szegö des polynômes et est définie comme . Dans le cas où P et Q sont hyperboliques, c. à d. n'ayant que des racines réelles, nous donnons la réponse exhaustive à la question si on connaît les nombres de racines positives, négatives et nulles de P et Q, quels peuvent être ces nombres pour .
Accepted:
Published online:
Vladimir Petrov Kostov 1
@article{CRMATH_2007__345_9_483_0, author = {Vladimir Petrov Kostov}, title = {The {Schur{\textendash}Szeg\"o} composition for hyperbolic polynomials}, journal = {Comptes Rendus. Math\'ematique}, pages = {483--488}, publisher = {Elsevier}, volume = {345}, number = {9}, year = {2007}, doi = {10.1016/j.crma.2007.10.003}, language = {en}, }
Vladimir Petrov Kostov. The Schur–Szegö composition for hyperbolic polynomials. Comptes Rendus. Mathématique, Volume 345 (2007) no. 9, pp. 483-488. doi : 10.1016/j.crma.2007.10.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.003/
[1] S. Alkhatib, V.P. Kostov, The Schur–Szegö composition of real polynomials of degree 2, Revista Mat. Complut., in press
[2] On the Schur–Szegö composition of polynomials, C. R. Acad. Sci. Paris, Ser. I, Volume 343 (2006), pp. 81-86
[3] On arrangements of roots for a real hyperbolic polynomial and its derivatives, Bull. Sci. Math., Volume 126 (2002) no. 1, pp. 45-60
[4] Polynomials, Algorithms and Computation in Mathematics, vol. 11, Springer-Verlag, Berlin, 2004 (xiv+301 pp)
Cited by Sources:
⁎ Research partially supported by Wenner-Grenn Foundation.
Comments - Politique