[Hyperelliptic curves of genus three and the Kodaira–Spencer map]
We construct explicitly the Kodaira–Spencer mapping for one parameter families of hyperelliptic curves of genus three with a rational Weierstrass point.
On construit explicitement l'application de Kodaira–Spencer pour les familles à un paramètre de courbes hyperelliptiques de genre trois munies d'un point de Weierstrass rationnel.
Accepted:
Published online:
François Foucault 1; Philippe Toffin 2
@article{CRMATH_2007__345_12_685_0, author = {Fran\c{c}ois Foucault and Philippe Toffin}, title = {Courbes hyperelliptiques de genre trois et application de {Kodaira{\textendash}Spencer}}, journal = {Comptes Rendus. Math\'ematique}, pages = {685--687}, publisher = {Elsevier}, volume = {345}, number = {12}, year = {2007}, doi = {10.1016/j.crma.2007.10.030}, language = {fr}, }
TY - JOUR AU - François Foucault AU - Philippe Toffin TI - Courbes hyperelliptiques de genre trois et application de Kodaira–Spencer JO - Comptes Rendus. Mathématique PY - 2007 SP - 685 EP - 687 VL - 345 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2007.10.030 LA - fr ID - CRMATH_2007__345_12_685_0 ER -
François Foucault; Philippe Toffin. Courbes hyperelliptiques de genre trois et application de Kodaira–Spencer. Comptes Rendus. Mathématique, Volume 345 (2007) no. 12, pp. 685-687. doi : 10.1016/j.crma.2007.10.030. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.10.030/
[1] Introduction to the Theory of Algebraic Functions of One Variable, Math. Surveys, vol. VI, 1951
[2] Equations de Picard–Fuchs et courbes de genre deux, C. R. Acad. Sci. Paris Sér. I Math., Volume 314 (1992), pp. 617-619
[3] Algebraic solutions of differential equations, Invent. Math., Volume 18 (1972), pp. 1-118
[4] A recursive method for computing zeta functions of varieties, London Math. Soc. J. Comp. Math., Volume 9 (2006), pp. 222-269
[5] Algebraic Geometry and Arithmetic Curves, Oxford Graduate Texts in Math., 2002 (Oxford Science Publications)
[6] Rational Points of Algebraic Curves over Function Fields, Amer. Math. Soc. Transl. Ser. 2, vol. 50, 1963 (pp. 189–234)
[7] Differentials of the second kind for algebraic functions fields of one variable, Ann. of Math., Volume 57 (1953) no. 3, pp. 517-523
Cited by Sources:
Comments - Policy