Comptes Rendus
Dynamical Systems
Maslov index for solitary waves obtained as a limit of the Maslov index for periodic waves
Comptes Rendus. Mathématique, Volume 345 (2007) no. 12, pp. 689-694.

A Maslov index for a solitary wave can be defined by approximating the solitary wave with periodic waves: when a sequence of periodic waves ϕα converges to the solitary wave ϕ, then the sequence of Maslov indices converges and its limit can be used as a definition for the Maslov index of ϕ.

On peut définir l'indice de Maslov pour une onde solitaire en approchant l'onde solitaire par des ondes périodiques : lorsqu'une suite d'ondes périodiques ϕα converge vers l'onde solitaire ϕ, alors sa limite peut-être utilisée comme définition de l'indice de Maslov de ϕ.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2007.11.003

Frédéric Chardard 1

1 CMLA, ENS Cachan, CNRS, UniverSud, 61 Avenue President Wilson, F-94230 Cachan, France
@article{CRMATH_2007__345_12_689_0,
     author = {Fr\'ed\'eric Chardard},
     title = {Maslov index for solitary waves obtained as a limit of the {Maslov} index for periodic waves},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {689--694},
     publisher = {Elsevier},
     volume = {345},
     number = {12},
     year = {2007},
     doi = {10.1016/j.crma.2007.11.003},
     language = {en},
}
TY  - JOUR
AU  - Frédéric Chardard
TI  - Maslov index for solitary waves obtained as a limit of the Maslov index for periodic waves
JO  - Comptes Rendus. Mathématique
PY  - 2007
SP  - 689
EP  - 694
VL  - 345
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crma.2007.11.003
LA  - en
ID  - CRMATH_2007__345_12_689_0
ER  - 
%0 Journal Article
%A Frédéric Chardard
%T Maslov index for solitary waves obtained as a limit of the Maslov index for periodic waves
%J Comptes Rendus. Mathématique
%D 2007
%P 689-694
%V 345
%N 12
%I Elsevier
%R 10.1016/j.crma.2007.11.003
%G en
%F CRMATH_2007__345_12_689_0
Frédéric Chardard. Maslov index for solitary waves obtained as a limit of the Maslov index for periodic waves. Comptes Rendus. Mathématique, Volume 345 (2007) no. 12, pp. 689-694. doi : 10.1016/j.crma.2007.11.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.11.003/

[1] J. Alexander; R. Gardner; C.K.R.T. Jones A topological invariant arising in the stability analysis of traveling waves, J. Reine Angew. Math., Volume 410 (1990), pp. 167-272

[2] V.I. Arnol'd Characteristic class entering in quantization conditions, Funktsional. Anal. i Prilozhen., Volume 1 (1967) no. 1, pp. 1-14

[3] A. Bose; C.K.R.T. Jones Stability of the in-phase travelling wave solution in a pair of coupled nerve fibers, Indiana Univ. Math. J., Volume 44 (1995) no. 1, pp. 189-220

[4] F. Chardard, F. Dias, T.J. Bridges, Computing the Maslov index of solitary waves, in preparation

[5] F. Chardard; F. Dias; T.J. Bridges Fast computation of the Maslov Index for hyperbolic linear systems with periodic coefficients, J. Phys. A: Math. Gen., Volume 39 (2006) no. 47, pp. 14545-14557

[6] M. Chugunova; D. Pelinovsky Count of eigenvalues in the generalized eigenvalue problem, 2006 (preprint, arXiv: pp. 1–30) | arXiv

[7] R.A. Gardner Spectral analysis of long wavelength periodic waves and applications, J. Reine Angew. Math., Volume 491 (1997), pp. 149-181

[8] C.K.R.T. Jones Instability of standing waves for non-linear Schrödinger-type equations, Ergodic Theory Dynam. Systems, Volume 8* (1988), pp. 119-138

Cited by Sources:

Comments - Policy