A Maslov index for a solitary wave can be defined by approximating the solitary wave with periodic waves: when a sequence of periodic waves converges to the solitary wave ϕ, then the sequence of Maslov indices converges and its limit can be used as a definition for the Maslov index of ϕ.
On peut définir l'indice de Maslov pour une onde solitaire en approchant l'onde solitaire par des ondes périodiques : lorsqu'une suite d'ondes périodiques converge vers l'onde solitaire ϕ, alors sa limite peut-être utilisée comme définition de l'indice de Maslov de ϕ.
Accepted:
Published online:
Frédéric Chardard 1
@article{CRMATH_2007__345_12_689_0,
author = {Fr\'ed\'eric Chardard},
title = {Maslov index for solitary waves obtained as a limit of the {Maslov} index for periodic waves},
journal = {Comptes Rendus. Math\'ematique},
pages = {689--694},
year = {2007},
publisher = {Elsevier},
volume = {345},
number = {12},
doi = {10.1016/j.crma.2007.11.003},
language = {en},
}
Frédéric Chardard. Maslov index for solitary waves obtained as a limit of the Maslov index for periodic waves. Comptes Rendus. Mathématique, Volume 345 (2007) no. 12, pp. 689-694. doi: 10.1016/j.crma.2007.11.003
[1] A topological invariant arising in the stability analysis of traveling waves, J. Reine Angew. Math., Volume 410 (1990), pp. 167-272
[2] Characteristic class entering in quantization conditions, Funktsional. Anal. i Prilozhen., Volume 1 (1967) no. 1, pp. 1-14
[3] Stability of the in-phase travelling wave solution in a pair of coupled nerve fibers, Indiana Univ. Math. J., Volume 44 (1995) no. 1, pp. 189-220
[4] F. Chardard, F. Dias, T.J. Bridges, Computing the Maslov index of solitary waves, in preparation
[5] Fast computation of the Maslov Index for hyperbolic linear systems with periodic coefficients, J. Phys. A: Math. Gen., Volume 39 (2006) no. 47, pp. 14545-14557
[6] Count of eigenvalues in the generalized eigenvalue problem, 2006 (preprint, arXiv: pp. 1–30) | arXiv
[7] Spectral analysis of long wavelength periodic waves and applications, J. Reine Angew. Math., Volume 491 (1997), pp. 149-181
[8] Instability of standing waves for non-linear Schrödinger-type equations, Ergodic Theory Dynam. Systems, Volume 8* (1988), pp. 119-138
Cited by Sources:
Comments - Policy
