[Un indice de Maslov pour les ondes solitaires obtenu comme limite de l'indice de Maslov pour les ondes périodiques]
On peut définir l'indice de Maslov pour une onde solitaire en approchant l'onde solitaire par des ondes périodiques : lorsqu'une suite d'ondes périodiques
A Maslov index for a solitary wave can be defined by approximating the solitary wave with periodic waves: when a sequence of periodic waves
Accepté le :
Publié le :
Frédéric Chardard 1
@article{CRMATH_2007__345_12_689_0, author = {Fr\'ed\'eric Chardard}, title = {Maslov index for solitary waves obtained as a limit of the {Maslov} index for periodic waves}, journal = {Comptes Rendus. Math\'ematique}, pages = {689--694}, publisher = {Elsevier}, volume = {345}, number = {12}, year = {2007}, doi = {10.1016/j.crma.2007.11.003}, language = {en}, }
Frédéric Chardard. Maslov index for solitary waves obtained as a limit of the Maslov index for periodic waves. Comptes Rendus. Mathématique, Volume 345 (2007) no. 12, pp. 689-694. doi : 10.1016/j.crma.2007.11.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.11.003/
[1] A topological invariant arising in the stability analysis of traveling waves, J. Reine Angew. Math., Volume 410 (1990), pp. 167-272
[2] Characteristic class entering in quantization conditions, Funktsional. Anal. i Prilozhen., Volume 1 (1967) no. 1, pp. 1-14
[3] Stability of the in-phase travelling wave solution in a pair of coupled nerve fibers, Indiana Univ. Math. J., Volume 44 (1995) no. 1, pp. 189-220
[4] F. Chardard, F. Dias, T.J. Bridges, Computing the Maslov index of solitary waves, in preparation
[5] Fast computation of the Maslov Index for hyperbolic linear systems with periodic coefficients, J. Phys. A: Math. Gen., Volume 39 (2006) no. 47, pp. 14545-14557
[6] Count of eigenvalues in the generalized eigenvalue problem, 2006 (preprint, arXiv: pp. 1–30) | arXiv
[7] Spectral analysis of long wavelength periodic waves and applications, J. Reine Angew. Math., Volume 491 (1997), pp. 149-181
[8] Instability of standing waves for non-linear Schrödinger-type equations, Ergodic Theory Dynam. Systems, Volume 8* (1988), pp. 119-138
- Transversality of homoclinic orbits, the Maslov index and the symplectic Evans function, Nonlinearity, Volume 28 (2015) no. 1, p. 77 | DOI:10.1088/0951-7715/28/1/77
- The Evans Function for Sturm–Liouville Operators on the Real Line, Spectral and Dynamical Stability of Nonlinear Waves, Volume 185 (2013), p. 249 | DOI:10.1007/978-1-4614-6995-7_9
- Computing the Maslov index of solitary waves. II: Phase space with dimension greater than four, Physica D, Volume 240 (2011) no. 17, pp. 1334-1344 | DOI:10.1016/j.physd.2011.05.014 | Zbl:1228.35197
- Computing the Maslov index of solitary waves. I: Hamiltonian systems on a four-dimensional phase space, Physica D, Volume 238 (2009) no. 18, pp. 1841-1867 | DOI:10.1016/j.physd.2009.05.008 | Zbl:1179.37097
- On the Maslov index of multi-pulse homoclinic orbits, Proceedings of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences, Volume 465 (2009) no. 2109, pp. 2897-2910 | DOI:10.1098/rspa.2009.0155 | Zbl:1186.37030
Cité par 5 documents. Sources : Crossref, zbMATH
Commentaires - Politique