It is known that under suitable integrability assumptions, the Cesàro sums – of order – associated to an i.i.d. sequence of random variables fulfill a Kolmogorov-like strong law of large numbers. Here, we make this asymptotic behaviour more precise by showing that these sums are generalized martingales (amart or quasimartingale).
On sait que sous des hypothèses d'intégrabilité adéquates, les sommes de Cesàro – d'ordre – associées à une suite de variables aléatoires i.i.d. vérifient une loi des grands nombres analogue à celle de Kolmogorov. Nous précisons ce comportement presque sûr en montrant que ces sommes ont un comportement de martingale généralisée (amart ou quasimartingale).
Accepted:
Published online:
Florian Hechner 1
@article{CRMATH_2007__345_12_705_0, author = {Florian Hechner}, title = {Comportement asymptotique de sommes de {Ces\`aro} al\'eatoires}, journal = {Comptes Rendus. Math\'ematique}, pages = {705--708}, publisher = {Elsevier}, volume = {345}, number = {12}, year = {2007}, doi = {10.1016/j.crma.2007.11.004}, language = {fr}, }
Florian Hechner. Comportement asymptotique de sommes de Cesàro aléatoires. Comptes Rendus. Mathématique, Volume 345 (2007) no. 12, pp. 705-708. doi : 10.1016/j.crma.2007.11.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.11.004/
[1] Limiting behaviour of weighted sums of independent identically distributed random variables, Ann. Probab., Volume 1 (1973), pp. 810-823
[2] Stopping rules for , and the class , Z. Wahrsch. Verw. Gebiete, Volume 17 (1971), pp. 147-150
[3] Sur la convergence presque sûre, au sens de Cesàro d'ordre α, , de variables aléatoires indépendantes et identiquement distribuées, Probab. Theory Rel. Fields, Volume 79 (1988), pp. 629-636
[4] Stopping Times and Directed Processes, Encyclopedia of Mathematics and its Applications, vol. 47, Cambridge University Press, Cambridge, 1992
[5] An introduction to the theory of asymptotic martingales, Amarts and Set Function Processes, Lecture Notes in Mathematics, vol. 1042, Springer, Berlin, 1983
[6] When is an amart ?, Studia Sci. Math. Hungar., Volume 32 (1996), pp. 445-453
[7] Borel and Banach properties of methods of summation, Duke Math. J., Volume 22 (1955), pp. 129-141
[8] Sur les fonctions indépendantes, Fund. Math., Volume 29 (1937), pp. 60-90
[9] On the subspace of spanned by sequences of independent random variables, Israel J. Math., Volume 8 (1970), pp. 273-303
Cited by Sources:
Comments - Policy