Given a finite group H and a free group , we prove that the wreath product admits a metrically proper, isometric action on a Hilbert space.
Soit H un groupe fini et F un groupe libre, ou plus généralement un groupe admettant une structure d'espace à murs invariante à gauche et propre. Nous montrons que le produit en couronne admet également une telle structure d'espace à murs. En conséquence, il a la propriété de Haagerup, c'est-à-dire qu'il possède une action isométrique métriquement propre sur un espace de Hilbert.
Accepted:
Published online:
Yves de Cornulier 1; Yves Stalder 2; Alain Valette 3
@article{CRMATH_2008__346_3-4_173_0, author = {Yves de Cornulier and Yves Stalder and Alain Valette}, title = {Proper actions of lamplighter groups associated with free groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {173--176}, publisher = {Elsevier}, volume = {346}, number = {3-4}, year = {2008}, doi = {10.1016/j.crma.2007.11.027}, language = {en}, }
TY - JOUR AU - Yves de Cornulier AU - Yves Stalder AU - Alain Valette TI - Proper actions of lamplighter groups associated with free groups JO - Comptes Rendus. Mathématique PY - 2008 SP - 173 EP - 176 VL - 346 IS - 3-4 PB - Elsevier DO - 10.1016/j.crma.2007.11.027 LA - en ID - CRMATH_2008__346_3-4_173_0 ER -
Yves de Cornulier; Yves Stalder; Alain Valette. Proper actions of lamplighter groups associated with free groups. Comptes Rendus. Mathématique, Volume 346 (2008) no. 3-4, pp. 173-176. doi : 10.1016/j.crma.2007.11.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.11.027/
[1] Groups with the Haagerup Property, Progress in Mathematics, vol. 197, Birkhäuser Verlag, Basel, 2001
[2] Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. Math., Volume 96 (1989) no. 3, pp. 507-549
[3] From wall spaces to CAT(0) cube complexes, Internat. J. Algebra Comput., Volume 15 (2005) no. 5–6, pp. 875-885
[4] Weak amenability of CAT(0) cubical groups (arXiv:) | arXiv
[5] Simplicité de groupes d'automorphismes d'espaces à courbure négative, The Epstein Birthday Schrift, Geom. Topol. Monogr., vol. 1, Geom. Topol. Publ., Coventry, 1998, pp. 181-248 (electronic)
[6] Cubulating spaces with walls, Algebr. Geom. Topol., Volume 4 (2004), pp. 297-309 (electronic)
[7] On a class of II1 factors with at most one Cartan subalgebra (arXiv:) | arXiv
Cited by Sources:
⁎ This research was performed at Centre Bernoulli (EPF Lausanne), in the framework of the semester “Limits of graphs in group theory and computer science”.
Comments - Policy