[Contrôlabilité de l'équation de Ginzburg–Landau]
Cette Note est dévolue à l'étude de la contrôlabilité frontière, ou interne, de l'équation complexe de Ginzburg–Landau. Des résultats de contrôlabilité à zéro sont obtenus au moyen d'une inégalité de Carleman et d'une analyse basée sur la théorie des opérateurs sectoriels.
This Note investigates the boundary controllability, as well as the internal controllability, of the complex Ginzburg–Landau equation. Null-controllability results are derived from a Carleman estimate and an analysis based upon the theory of sectorial operators.
Publié le :
Lionel Rosier 1, 2 ; Bing-Yu Zhang 3
@article{CRMATH_2008__346_3-4_167_0, author = {Lionel Rosier and Bing-Yu Zhang}, title = {Controllability of the {Ginzburg{\textendash}Landau} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {167--172}, publisher = {Elsevier}, volume = {346}, number = {3-4}, year = {2008}, doi = {10.1016/j.crma.2007.11.031}, language = {en}, }
Lionel Rosier; Bing-Yu Zhang. Controllability of the Ginzburg–Landau equation. Comptes Rendus. Mathématique, Volume 346 (2008) no. 3-4, pp. 167-172. doi : 10.1016/j.crma.2007.11.031. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.11.031/
[1] J.L. Boldrini, E. Fernandez-Cara, S. Guerrero, On the controllability of the Ginzburg–Landau equation, in preparation
[2] Null controllability of the semilinear heat equation, ESAIM Control Optim. Calc. Var., Volume 2 (1997), pp. 87-103
[3] A weighted identity for partial differential operators of second order and its applications, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 579-584
[4] Controllability of Evolution Equations, Lecture Notes Ser., vol. 34, Research Institute of Mathematics, Seoul National University, Seoul, Korea, 1996
[5] Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981
[6] Distribution-valued initial data for the complex Ginzburg–Landau equation, Comm. Partial Differential Equations, Volume 22 (1997), pp. 39-48
[7] Berkeley, CA, 1994, Lectures in Appl. Math., vol. 31, Amer. Math. Soc., Providence, RI (1996), pp. 141-190
[8] The complex Ginzburg–Landau equation on large and unbounded domains: Sharper bounds and attractors, Nonlinearity, Volume 10 (1997), pp. 199-222
[9] L. Rosier, B.-Y. Zhang, Null controllability of the complex Ginzburg–Landau equation, submitted for publication
Cité par Sources :
Commentaires - Politique