This Note investigates the boundary controllability, as well as the internal controllability, of the complex Ginzburg–Landau equation. Null-controllability results are derived from a Carleman estimate and an analysis based upon the theory of sectorial operators.
Cette Note est dévolue à l'étude de la contrôlabilité frontière, ou interne, de l'équation complexe de Ginzburg–Landau. Des résultats de contrôlabilité à zéro sont obtenus au moyen d'une inégalité de Carleman et d'une analyse basée sur la théorie des opérateurs sectoriels.
Published online:
Lionel Rosier 1, 2; Bing-Yu Zhang 3
@article{CRMATH_2008__346_3-4_167_0, author = {Lionel Rosier and Bing-Yu Zhang}, title = {Controllability of the {Ginzburg{\textendash}Landau} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {167--172}, publisher = {Elsevier}, volume = {346}, number = {3-4}, year = {2008}, doi = {10.1016/j.crma.2007.11.031}, language = {en}, }
Lionel Rosier; Bing-Yu Zhang. Controllability of the Ginzburg–Landau equation. Comptes Rendus. Mathématique, Volume 346 (2008) no. 3-4, pp. 167-172. doi : 10.1016/j.crma.2007.11.031. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.11.031/
[1] J.L. Boldrini, E. Fernandez-Cara, S. Guerrero, On the controllability of the Ginzburg–Landau equation, in preparation
[2] Null controllability of the semilinear heat equation, ESAIM Control Optim. Calc. Var., Volume 2 (1997), pp. 87-103
[3] A weighted identity for partial differential operators of second order and its applications, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 579-584
[4] Controllability of Evolution Equations, Lecture Notes Ser., vol. 34, Research Institute of Mathematics, Seoul National University, Seoul, Korea, 1996
[5] Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin, 1981
[6] Distribution-valued initial data for the complex Ginzburg–Landau equation, Comm. Partial Differential Equations, Volume 22 (1997), pp. 39-48
[7] Berkeley, CA, 1994, Lectures in Appl. Math., vol. 31, Amer. Math. Soc., Providence, RI (1996), pp. 141-190
[8] The complex Ginzburg–Landau equation on large and unbounded domains: Sharper bounds and attractors, Nonlinearity, Volume 10 (1997), pp. 199-222
[9] L. Rosier, B.-Y. Zhang, Null controllability of the complex Ginzburg–Landau equation, submitted for publication
Cited by Sources:
Comments - Policy