The Neyman–Pearson fundamental lemma is generalized under g-probability. With convexity assumptions, a sufficient and necessary condition which characterizes the optimal randomized tests is obtained via a maximum principle for stochastic control.
Le lemme fondamental de Neyman–Pearson est généralisé au cas de g-probabilités. Sous des hypothèses de convexité, une condition suffisante et nécessaire caractérisant le test randomisé optimal est obtenue au moyen du principe du maximum dans le cadre du contrôle stochastique.
Accepted:
Published online:
Shaolin Ji 1; Xun Yu Zhou 2, 3
@article{CRMATH_2008__346_3-4_209_0, author = {Shaolin Ji and Xun Yu Zhou}, title = {The {Neyman{\textendash}Pearson} lemma under \protect\emph{g}-probability}, journal = {Comptes Rendus. Math\'ematique}, pages = {209--212}, publisher = {Elsevier}, volume = {346}, number = {3-4}, year = {2008}, doi = {10.1016/j.crma.2007.12.007}, language = {en}, }
Shaolin Ji; Xun Yu Zhou. The Neyman–Pearson lemma under g-probability. Comptes Rendus. Mathématique, Volume 346 (2008) no. 3-4, pp. 209-212. doi : 10.1016/j.crma.2007.12.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.12.007/
[1] Portfolio management with constraints, Math. Finance, Volume 17 (2007), pp. 319-343
[2] Ambiguity, risk and asset returns in continuous time, Econometrica, Volume 70 (2002), pp. 1403-1443
[3] Minimax pricing and Choquet pricing, Insurance: Mathematics and Economics, Volume 38 (2006), pp. 518-528
[4] Generalized Neyman–Pearson lemma via convex duality, Bernoulli, Volume 7 (2001), pp. 79-97
[5] Backward stochastic differential equations in finance, Math. Finance, Volume 7 (1997), pp. 1-71
[6] A dynamic maximum principle for the optimization of recursive utilities under constraints, Ann. Appl. Probab., Volume 11 (2001), pp. 664-693
[7] Efficient hedging: cost versus shortfall risk, Finance Stochast., Volume 4 (2000), pp. 117-146
[8] Risk measures via g-expectations, Insurance: Mathematics and Economics (2006), pp. 19-34
[9] Mathematical Theory of Statistics, Walter de Gruyter & Co., Berlin, 1985
[10] Minimax tests and the Neyman–Pearson lemma for capacities, Ann. Statist., Volume 1 (1973), pp. 251-263
[11] S. Ji, S. Peng, Terminal perturbation method for the backward approach to continuous-time mean-variance portfolio selection, Stochastic Process. Appl. (2008), , in press | DOI
[12] A maximum principle for stochastic optimal control with terminal state constraints, and its applications, Commun. Inf. Systems, Volume 6 (2006), pp. 321-337 (a special issue dedicated to Tyrone Duncan on the occasion of his 65th birthday)
[13] Backward stochastic differential equations and related g-expectation (N. El Karoui; L. Mazliak, eds.), Backward Stochastic Differential Equations, Pitman Res. Notes Math. Ser., vol. 364, 1997, pp. 141-159
Cited by Sources:
⁎ The authors thank the partial support from the National Basic Research Program of China (973 Program, No. 2007CB814900), the RGC Earmark Grant No. 418606, and a start-up fund at Oxford.
⁎⁎ This Note is the succinct version of a text on file for five years in the Academy Archives.
Comments - Policy