In this Note we present an algebraic analysis of the system of differential equations described by the Hermitian Dirac operators, which are two linear first order operators invariant with respect to the action of the unitary group, both in the case of one and several variables.
Nous présentons l'analyse algébrique du système associé aux opérateurs de Dirac Hermitiens. Ceux-ci sont deux opérateurs linéaires du premier ordre, invariant sous l'action du groupe unitaire. Nous étudions le cas d'une et des plusieurs variables.
Accepted:
Published online:
Alberto Damiano 1; David Eelbode 2; Irene Sabadini 3
@article{CRMATH_2008__346_3-4_139_0, author = {Alberto Damiano and David Eelbode and Irene Sabadini}, title = {Algebraic analysis of {Hermitian} monogenic functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {139--142}, publisher = {Elsevier}, volume = {346}, number = {3-4}, year = {2008}, doi = {10.1016/j.crma.2007.12.009}, language = {en}, }
Alberto Damiano; David Eelbode; Irene Sabadini. Algebraic analysis of Hermitian monogenic functions. Comptes Rendus. Mathématique, Volume 346 (2008) no. 3-4, pp. 139-142. doi : 10.1016/j.crma.2007.12.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.12.009/
[1] Fundaments of Hermitian Clifford analysis – Part I: Complex structure, Complex Anal. Oper. Theory, Volume 1 (2007) no. 3, pp. 341-365
[2] F. Brackx, J. Bureš, H. De Schepper, D. Eelbode, F. Sommen, V. Souček, Fundaments of Hermitian Clifford analysis – Part II: Splitting of h-monogenic equations, Compl. Var. Ell. Equa., in press
[3] Analysis of Dirac Systems and Computational Algebra, Progress in Mathematical Physics, vol. 39, Birkhäuser, Boston, 2004
[4] A. Damiano, D. Eelbode, I. Sabadini, Invariant syzygies for the Hermitian Dirac operator, preprint, 2007
[5] A. Damiano, D. Eelbode, I. Sabadini, Quaternionic Hermitian spinor systems and compatibility conditions, in preparation
[6] D. Eelbode, Quaternionic monogenic function systems, preprint, 2007
[7] Quaternionic Clifford analysis: The Hermitian setting, Complex Anal. Oper. Theory, Volume 1 (2007) no. 1, pp. 97-113
[8] Hermitian Clifford analysis and resolutions, Math. Methods Appl. Sci., Volume 25 (2002) no. 16–18, pp. 1395-1413
Cited by Sources:
Comments - Politique