Comptes Rendus
Statistics
Change-point detection for continuous processes with high-frequency sampling
Comptes Rendus. Mathématique, Volume 346 (2008) no. 7-8, pp. 467-470.

We consider the detection of a jump in a continuous process over a fixed time interval. We aim to locate the jump position via discrete observations and consider how increasing the frequency of the observations affects the accuracy of the detection process. We show that the classical cumulative-sum estimator fails, and propose a new estimator based on local information that we prove converges exponentially fast.

Nous considérons la détection de saut dans un processus en temps continu sur un intervalle de temps fini et fixé. On cherche à localiser dans le temps la position de rupture via des observations discrètes. Nous étudions l'effet de croissance de la fréquence d'échantillonnage sur la précision de l'estimation. Nous montrons que la procédure classique avec les estimateurs à sommes cumulatives échoue et nous proposons une alternative basée sur une localisation de l'information. Nous prouvons que le nouvel estimateur converge avec une vitesse exponentielle.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.02.005

Guangming Wang 1; Samir Ben Hariz 2; Jonathan J. Wylie 3; Qiang Zhang 3

1 School of Mathematics and Statistics, Wuhan University, Hubei, 430072, People's Republic of China
2 Laboratoire de statistique et processus, département de mathématiques, université du Maine, avenue Olivier-Messiaen, 72085 Le Mans cedex 9, France
3 Department of Mathematics, City University of Hong Kong, 83, Tat Chee Avenue, Kowloon, Hong Kong
@article{CRMATH_2008__346_7-8_467_0,
     author = {Guangming Wang and Samir Ben Hariz and Jonathan J. Wylie and Qiang Zhang},
     title = {Change-point detection for continuous processes with high-frequency sampling},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {467--470},
     publisher = {Elsevier},
     volume = {346},
     number = {7-8},
     year = {2008},
     doi = {10.1016/j.crma.2008.02.005},
     language = {en},
}
TY  - JOUR
AU  - Guangming Wang
AU  - Samir Ben Hariz
AU  - Jonathan J. Wylie
AU  - Qiang Zhang
TI  - Change-point detection for continuous processes with high-frequency sampling
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 467
EP  - 470
VL  - 346
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crma.2008.02.005
LA  - en
ID  - CRMATH_2008__346_7-8_467_0
ER  - 
%0 Journal Article
%A Guangming Wang
%A Samir Ben Hariz
%A Jonathan J. Wylie
%A Qiang Zhang
%T Change-point detection for continuous processes with high-frequency sampling
%J Comptes Rendus. Mathématique
%D 2008
%P 467-470
%V 346
%N 7-8
%I Elsevier
%R 10.1016/j.crma.2008.02.005
%G en
%F CRMATH_2008__346_7-8_467_0
Guangming Wang; Samir Ben Hariz; Jonathan J. Wylie; Qiang Zhang. Change-point detection for continuous processes with high-frequency sampling. Comptes Rendus. Mathématique, Volume 346 (2008) no. 7-8, pp. 467-470. doi : 10.1016/j.crma.2008.02.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.02.005/

[1] M. Basseville; I.V. Nikiforov Detection of Abrupt Changes: Theory and Application, Prentice-Hall, Englewood Cliffs, NJ, 1993

[2] S. Ben Hariz, G.M. Wang, J.J. Wylie, Q. Zhang, Jump detection for discretely observed continuous processes, Preprint, 2007

[3] S. Ben Hariz; J.J. Wylie; Q. Zhang Optimal rate of convergence for nonparametric change-point estimators for non-stationary sequences, Ann. Statist., Volume 35 (2007), pp. 1802-1826

[4] E. Carlstein Nonparametric change-point estimation, Ann. Statist., Volume 16 (1988), pp. 188-197

[5] L. Dumbgen The asymptotic behavior of some nonparametric change-point estimators, Ann. Statist., Volume 19 (1991), pp. 1471-1495

[6] I.V. Nikiforov A generalized change detection problem, IEEE Trans. Inform. Theory, Volume 41 (1995) no. 1, pp. 171-187

[7] I.V. Nikiforov Two strategies in the problem of change detection and isolation, IEEE Trans. Inform. Theory, Volume 43 (1997) no. 2, pp. 770-776

[8] Y. Wang Jump and sharp cusp detection by wavelets, Biometrika, Volume 82 (1995) no. 2, pp. 385-397

[9] H. Wong; W. Ip; Y. Li Detection of jumps by wavelets in a heteroscedastic autoregressive model, Statist. Probab. Lett., Volume 52 (2001) no. 4, pp. 365-372

Cited by Sources:

Comments - Policy