We consider the detection of a jump in a continuous process over a fixed time interval. We aim to locate the jump position via discrete observations and consider how increasing the frequency of the observations affects the accuracy of the detection process. We show that the classical cumulative-sum estimator fails, and propose a new estimator based on local information that we prove converges exponentially fast.
Nous considérons la détection de saut dans un processus en temps continu sur un intervalle de temps fini et fixé. On cherche à localiser dans le temps la position de rupture via des observations discrètes. Nous étudions l'effet de croissance de la fréquence d'échantillonnage sur la précision de l'estimation. Nous montrons que la procédure classique avec les estimateurs à sommes cumulatives échoue et nous proposons une alternative basée sur une localisation de l'information. Nous prouvons que le nouvel estimateur converge avec une vitesse exponentielle.
Accepted:
Published online:
Guangming Wang 1; Samir Ben Hariz 2; Jonathan J. Wylie 3; Qiang Zhang 3
@article{CRMATH_2008__346_7-8_467_0, author = {Guangming Wang and Samir Ben Hariz and Jonathan J. Wylie and Qiang Zhang}, title = {Change-point detection for continuous processes with high-frequency sampling}, journal = {Comptes Rendus. Math\'ematique}, pages = {467--470}, publisher = {Elsevier}, volume = {346}, number = {7-8}, year = {2008}, doi = {10.1016/j.crma.2008.02.005}, language = {en}, }
TY - JOUR AU - Guangming Wang AU - Samir Ben Hariz AU - Jonathan J. Wylie AU - Qiang Zhang TI - Change-point detection for continuous processes with high-frequency sampling JO - Comptes Rendus. Mathématique PY - 2008 SP - 467 EP - 470 VL - 346 IS - 7-8 PB - Elsevier DO - 10.1016/j.crma.2008.02.005 LA - en ID - CRMATH_2008__346_7-8_467_0 ER -
%0 Journal Article %A Guangming Wang %A Samir Ben Hariz %A Jonathan J. Wylie %A Qiang Zhang %T Change-point detection for continuous processes with high-frequency sampling %J Comptes Rendus. Mathématique %D 2008 %P 467-470 %V 346 %N 7-8 %I Elsevier %R 10.1016/j.crma.2008.02.005 %G en %F CRMATH_2008__346_7-8_467_0
Guangming Wang; Samir Ben Hariz; Jonathan J. Wylie; Qiang Zhang. Change-point detection for continuous processes with high-frequency sampling. Comptes Rendus. Mathématique, Volume 346 (2008) no. 7-8, pp. 467-470. doi : 10.1016/j.crma.2008.02.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.02.005/
[1] Detection of Abrupt Changes: Theory and Application, Prentice-Hall, Englewood Cliffs, NJ, 1993
[2] S. Ben Hariz, G.M. Wang, J.J. Wylie, Q. Zhang, Jump detection for discretely observed continuous processes, Preprint, 2007
[3] Optimal rate of convergence for nonparametric change-point estimators for non-stationary sequences, Ann. Statist., Volume 35 (2007), pp. 1802-1826
[4] Nonparametric change-point estimation, Ann. Statist., Volume 16 (1988), pp. 188-197
[5] The asymptotic behavior of some nonparametric change-point estimators, Ann. Statist., Volume 19 (1991), pp. 1471-1495
[6] A generalized change detection problem, IEEE Trans. Inform. Theory, Volume 41 (1995) no. 1, pp. 171-187
[7] Two strategies in the problem of change detection and isolation, IEEE Trans. Inform. Theory, Volume 43 (1997) no. 2, pp. 770-776
[8] Jump and sharp cusp detection by wavelets, Biometrika, Volume 82 (1995) no. 2, pp. 385-397
[9] Detection of jumps by wavelets in a heteroscedastic autoregressive model, Statist. Probab. Lett., Volume 52 (2001) no. 4, pp. 365-372
Cited by Sources:
Comments - Policy