We study the problem of an elastic inclusion with high rigidity in a 3D domain. First we consider an inclusion with a plate-like geometry and then in the more general framework of curvilinear coordinates, an inclusion with a shell-like geometry. We compare our formal models to those obtained by Chapelle–Ferent and by Bessoud et al.
On étudie le problème d'une inclusion élastique de grande rigidité dans un domaine 3D. Cette inclusion est d'abord vue comme un domaine géométrique de type plaque, puis plus généralement comme un domaine géométrique de type coque. On compare les modèles obtenus formellement à ceux de Chapelle–Ferent et de Bessoud et al.
Accepted:
Published online:
Anne-Laure Bessoud 1, 2; Françoise Krasucki 1; Michele Serpilli 2
@article{CRMATH_2008__346_11-12_697_0, author = {Anne-Laure Bessoud and Fran\c{c}oise Krasucki and Michele Serpilli}, title = {Plate-like and shell-like inclusions with high rigidity}, journal = {Comptes Rendus. Math\'ematique}, pages = {697--702}, publisher = {Elsevier}, volume = {346}, number = {11-12}, year = {2008}, doi = {10.1016/j.crma.2008.03.002}, language = {en}, }
TY - JOUR AU - Anne-Laure Bessoud AU - Françoise Krasucki AU - Michele Serpilli TI - Plate-like and shell-like inclusions with high rigidity JO - Comptes Rendus. Mathématique PY - 2008 SP - 697 EP - 702 VL - 346 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2008.03.002 LA - en ID - CRMATH_2008__346_11-12_697_0 ER -
Anne-Laure Bessoud; Françoise Krasucki; Michele Serpilli. Plate-like and shell-like inclusions with high rigidity. Comptes Rendus. Mathématique, Volume 346 (2008) no. 11-12, pp. 697-702. doi : 10.1016/j.crma.2008.03.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.03.002/
[1] The Finite Element Analysis of Shells-Fundamentals, Springer, Berlin, 2003
[2] Sur l'ellipticité du modèle linéaire de coques de W.T. Koiter (R. Glowinski; J.L. Lions, eds.), Computing Methods in Applied Sciences and Engineering, Lecture Notes in Economics and Mathematical Systems, vol. 134, Springer-Verlag, Heidelberg, 1976, pp. 89-136
[3] Existence theorems for two-dimensional linear shell theories, J. Elasticity, Volume 34 (1994), pp. 111-138
[4] A.L. Bessoud, F. Krasucki, G. Michaille, Multi-materials with strong interface: variational modelings, Asymptotic Anal., in press
[5] Reinforcement problems for elliptic equations and variational inequalities, Ann. Mat. Pura Appl. (4), Volume 123 (1980), pp. 219-246
[6] The effect of a thin inclusion of high rigidity in an elastic body, Math. Methods Appl. Sci., Volume 2 (1980), pp. 251-270
[7] Modeling of the inclusion of a reinforcing sheet within a 3D medium, Math. Models Methods Appl. Sci., Volume 13 (2003), pp. 573-595
[8] Mathematical Elasticity, vol. III: Theory of Shells, Studies in Mathematics and its Applications, North-Holland, Amsterdam, 2000
[9] Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations, Arch. Rational Mech. Anal., Volume 136 (1996), pp. 119-161
[10] An existence and uniqueness theorem for the two-dimensional linear membrane shell equations, J. Math. Pures Appl., Volume 75 (1996), pp. 51-67
[11] Mathematical analysis of a bonded joint with a soft thin adhesive, Math. Mech. Solids, Volume 4 (1999), pp. 201-225
[12] Phénomène de transmission à travers des couches minces de conductivité élevée, J. Math. Anal. Appl., Volume 47 (1974), pp. 284-309
[13] Coques élastiques minces : propriétés asymptotiques, Masson, Paris, 1997
Cited by Sources:
Comments - Policy