We prove weighted estimates on the linear KdV group, which are scaling sharp. This kind of estimates is in the spirit of that used to prove small data scattering for the generalized KdV equations.
Nous prouvons des inégalités à poids pour le groupe linéaire de KdV, qui sont optimales vis-à-vis du changement d'échelle. Ce type d'inégalité suit l'esprit de celles utilisées pour montrer que les solutions des équations de KdV généralisées dont les données sont petites dispersent linéairement.
Accepted:
Published online:
Raphaël Côte 1; Luis Vega 2
@article{CRMATH_2008__346_15-16_845_0, author = {Rapha\"el C\^ote and Luis Vega}, title = {Scaling-sharp dispersive estimates for the {Korteweg{\textendash}de} {Vries} group}, journal = {Comptes Rendus. Math\'ematique}, pages = {845--848}, publisher = {Elsevier}, volume = {346}, number = {15-16}, year = {2008}, doi = {10.1016/j.crma.2008.05.003}, language = {en}, }
Raphaël Côte; Luis Vega. Scaling-sharp dispersive estimates for the Korteweg–de Vries group. Comptes Rendus. Mathématique, Volume 346 (2008) no. 15-16, pp. 845-848. doi : 10.1016/j.crma.2008.05.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.05.003/
[1] Some weighted Gagliardo–Nirenberg inequalities and applications, Proc. Amer. Math. Soc., Volume 135 (2007), pp. 2795-2802 (electronic)
[2] Large time asymptotics of solutions to the generalized Korteweg–de Vries equation, J. Funct. Anal., Volume 159 (1998), pp. 110-136
[3] Analysis, American Mathematical Society, Providence, RI, 2001
[4] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970
Cited by Sources:
Comments - Policy