Comptes Rendus
Numerical Analysis
A consistent intermediate wave speed for a well-balanced HLLC solver
[Une vitesse de propogation intermédiaire consistante pour un schéma HLLC bien équilibré]
Comptes Rendus. Mathématique, Volume 346 (2008) no. 13-14, pp. 795-800.

Nous présentons une modification du schéma HLLC pour application aux équations de Saint-Venant non homogènes avec transport de polluants. Cette nouvelle version du schéma est reliée à la définition d'une vitesse d'onde intermédiaire consistante. Un exemple est donné afin d'illustrer les conséquences d'une mauvaise approximation de la vitesse intermédiaire sur des résultats de l'approximation de la concentration en polluant même avec un schéma bien équilibré.

In this work, we present a HLLC scheme modification for application to non-homogeneous shallow-water equations with pollutant transport. This new version is related to the definition of a consistent approximation of the intermediate wave speed. Numerical results are presented to illustrate the importance of such approximation to get appropriate pollutant concentration profiles.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.05.012

Enrique D. Fernández-Nieto 1 ; Didier Bresch 2 ; Jérôme Monnier 3

1 Dpto Matemática Aplicada I, Universidad de Sevilla, Avda. Reina Mercedes N. 2, 41012 Sevilla, Spain
2 LAMA, UMR5127 CNRS, Université de Savoie, 73376 Le Bourget du Lac, France
3 LJK – MOISE project-team, INP-Grenoble & INRIA, BP 53, 38041 Grenoble, France
@article{CRMATH_2008__346_13-14_795_0,
     author = {Enrique D. Fern\'andez-Nieto and Didier Bresch and J\'er\^ome Monnier},
     title = {A consistent intermediate wave speed for a well-balanced {HLLC} solver},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {795--800},
     publisher = {Elsevier},
     volume = {346},
     number = {13-14},
     year = {2008},
     doi = {10.1016/j.crma.2008.05.012},
     language = {en},
}
TY  - JOUR
AU  - Enrique D. Fernández-Nieto
AU  - Didier Bresch
AU  - Jérôme Monnier
TI  - A consistent intermediate wave speed for a well-balanced HLLC solver
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 795
EP  - 800
VL  - 346
IS  - 13-14
PB  - Elsevier
DO  - 10.1016/j.crma.2008.05.012
LA  - en
ID  - CRMATH_2008__346_13-14_795_0
ER  - 
%0 Journal Article
%A Enrique D. Fernández-Nieto
%A Didier Bresch
%A Jérôme Monnier
%T A consistent intermediate wave speed for a well-balanced HLLC solver
%J Comptes Rendus. Mathématique
%D 2008
%P 795-800
%V 346
%N 13-14
%I Elsevier
%R 10.1016/j.crma.2008.05.012
%G en
%F CRMATH_2008__346_13-14_795_0
Enrique D. Fernández-Nieto; Didier Bresch; Jérôme Monnier. A consistent intermediate wave speed for a well-balanced HLLC solver. Comptes Rendus. Mathématique, Volume 346 (2008) no. 13-14, pp. 795-800. doi : 10.1016/j.crma.2008.05.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.05.012/

[1] E. Audusse; F. Bouchut; M.O. Bristeau; R. Klein; B. Perthame A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comp., Volume 25 (2004) no. 6, pp. 2050-2065

[2] A. Bermúdez; M.E. Vázquez Cendón Upwind methods for hyperbolic conservation laws with source terms, Computers Fluids, Volume 23-8 (1994), pp. 1049-1071

[3] F. Bouchut Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources, Birkhäuser, 2004

[4] T. Chacón; A. Domínguez; E.D. Fernández-Nieto A family of stable numerical solvers for the shallow water equations with source terms, Comput. Methods Appl. Mech. Engrg., Volume 192 (2003), pp. 203-225

[5] T. Chacón Rebollo; A. Domínguez Delgado; E.D. Fernández-Nieto Asymptotically balanced schemes for non-homogeneous hyperbolic systems – application to shallow water equations, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 85-90

[6] L. Gosse A well-balanced scheme using non-conservative products designed for hyperbolic system of conservation laws with source terms, Math. Models Methods Appl. Sci., Volume 11 (2001), pp. 339-365

[7] G. Dal Maso; P.G. LeFloch; F. Murat Definition and weak stability of nonconservative products, J. Math. Pures Appl., Volume 74 (1995), pp. 483-548

[8] A. Domínguez, E.D. Fernández-Nieto, S. Martín, A well balanced third order HLL scheme for hyperbolic systems with source term, Application to shallow water equations (2006), submitted for publication

[9] E.D. Fernández-Nieto, G. Narbona-Reina, Extension of WAF type method to non-homogeneous shallow water equations with pollutant, J. Sci. Comput. (2008), in press

[10] J.M. Greenberg; A.Y. Leroux A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., Volume 33 (1996) no. 1, pp. 1-16

[11] P.G. LeFloch; A.E. Tzavaras Representation and weak limits and definition of nonconservative products, SIAM J. Math. Anal., Volume 30 (1999), pp. 1309-1342

[12] R.J. LeVeque Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm, J. Comput. Phys., Volume 146 (1998), pp. 346-365

[13] C. Parés; M.J. Castro On the well-balanced property of Roe method for nonconservative hyperbolic systems. Applications to shallow water systems, ESAIM: M2AN, Volume 38 (2004) no. 5, pp. 821-852

[14] B. Perthame; C. Simeoni A kinetic scheme for the Saint-Venant system with a source term, Calcolo, Volume 38 (2001) no. 4, pp. 201-231

[15] B. Perthame; C. Simeoni Convergence of the upwind interface source method for hyperbolic conservation laws (T. Hou; E. Tadmor, eds.), Proceeding of Hyp 2002, Springer, 2003

[16] E.F. Toro Shock-Capturing Methods for Free-Surface Shallow Flows, Springer, 1999

[17] J.G. Zhou; D.M. Causon; C.G. Mingham; D.M. Ingram The surface gradient method for the treatment of source terms in the sallow-water equations, J. Comput. Phys., Volume 168 (2001), pp. 1-25

  • Víctor González Tabernero; Manuel J. Castro; J.A. García-Rodríguez High-order well-balanced numerical schemes for one-dimensional shallow-water systems with Coriolis terms, Applied Mathematics and Computation, Volume 469 (2024), p. 128528 | DOI:10.1016/j.amc.2023.128528
  • Eleuterio F. Toro Approximate Riemann Solvers, Computational Algorithms for Shallow Water Equations (2024), p. 225 | DOI:10.1007/978-3-031-61395-1_11
  • Eleuterio F. Toro Concluding Remarks, Computational Algorithms for Shallow Water Equations (2024), p. 393 | DOI:10.1007/978-3-031-61395-1_17
  • Julien Zongo; Jean De Dieu Zabsonre; Brahima Roamba Formal derivation of a new sediment transport model using a multiscale procedure: Numerical Validation, Partial Differential Equations in Applied Mathematics, Volume 9 (2024), p. 100606 | DOI:10.1016/j.padiff.2023.100606
  • J. Garres-Díaz; E. D. Fernández-Nieto; A. Mangeney; T. Morales de Luna A Weakly Non-hydrostatic Shallow Model for Dry Granular Flows, Journal of Scientific Computing, Volume 86 (2021) no. 2 | DOI:10.1007/s10915-020-01377-9
  • Edwige Godlewski; Pierre-Arnaud Raviart Source Terms, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Volume 118 (2021), p. 627 | DOI:10.1007/978-1-0716-1344-3_7
  • Miguel Lastra; Manuel J. Castro Díaz; Carlos Ureña; Marc de la Asunción Efficient multilayer shallow-water simulation system based on GPUs, Mathematics and Computers in Simulation, Volume 148 (2018), p. 48 | DOI:10.1016/j.matcom.2017.11.008
  • Victor Michel-Dansac; Christophe Berthon; Stéphane Clain; Françoise Foucher A well-balanced scheme for the shallow-water equations with topography or Manning friction, Journal of Computational Physics, Volume 335 (2017), p. 115 | DOI:10.1016/j.jcp.2017.01.009
  • Victor Michel-Dansac; Christophe Berthon; Stéphane Clain; Françoise Foucher A well-balanced scheme for the shallow-water equations with topography, Computers Mathematics with Applications, Volume 72 (2016) no. 3, p. 568 | DOI:10.1016/j.camwa.2016.05.015
  • Sara Pavan; Riadh Ata; Jean-Michel Hervouet Finite volume schemes and residual distribution schemes for pollutant transport on unstructured grids, Environmental Earth Sciences, Volume 74 (2015) no. 11, p. 7337 | DOI:10.1007/s12665-015-4760-5
  • Marc de la Asunción; Manuel J. Castro; E.D. Fernández-Nieto; José M. Mantas; Sergio Ortega Acosta; José Manuel González-Vida Efficient GPU implementation of a two waves TVD-WAF method for the two-dimensional one layer shallow water system on structured meshes, Computers Fluids, Volume 80 (2013), p. 441 | DOI:10.1016/j.compfluid.2012.01.012
  • Marc de la Asunción; José M. Mantas; Manuel J. Castro; E.D. Fernández-Nieto An MPI-CUDA implementation of an improved Roe method for two-layer shallow water systems, Journal of Parallel and Distributed Computing, Volume 72 (2012) no. 9, p. 1065 | DOI:10.1016/j.jpdc.2011.07.012
  • X. Lai; J. Monnier Assimilation of spatially distributed water levels into a shallow-water flood model. Part I: Mathematical method and test case, Journal of Hydrology, Volume 377 (2009) no. 1-2, p. 1 | DOI:10.1016/j.jhydrol.2009.07.058
  • J. Marin; J. Monnier Superposition of local zoom models and simultaneous calibration for 1D–2D shallow water flows, Mathematics and Computers in Simulation, Volume 80 (2009) no. 3, p. 547 | DOI:10.1016/j.matcom.2009.09.001
  • E. D. Fernández-Nieto; G. Narbona-Reina Extension of WAF Type Methods to Non-Homogeneous Shallow Water Equations with Pollutant, Journal of Scientific Computing, Volume 36 (2008) no. 2, p. 193 | DOI:10.1007/s10915-008-9185-9

Cité par 15 documents. Sources : Crossref

Commentaires - Politique