Let E denote an elliptic curve defined over the rational numbers. We outline a method of proving the statement
Soit E une courbe elliptique définie sur le corps des nombres rationnels. Nous proposons une méthode pour démontrer l'énoncé
Accepted:
Published online:
Daniel Delbourgo 1
@article{CRMATH_2008__346_15-16_819_0, author = {Daniel Delbourgo}, title = {\protect\emph{P}-adic weight pairings on {pro-Jacobians}}, journal = {Comptes Rendus. Math\'ematique}, pages = {819--824}, publisher = {Elsevier}, volume = {346}, number = {15-16}, year = {2008}, doi = {10.1016/j.crma.2008.06.005}, language = {en}, }
Daniel Delbourgo. P-adic weight pairings on pro-Jacobians. Comptes Rendus. Mathématique, Volume 346 (2008) no. 15-16, pp. 819-824. doi : 10.1016/j.crma.2008.06.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.06.005/
[1] Λ-adic Euler characteristics of elliptic curves, Documenta Math., Volume volume in honour of J.H. Coates' 60th birthday (2006), pp. 301-323
[2] Elliptic Curves and Big Galois Representations, London Mathematical Society Lecture Note Series, vol. 356, Cambridge University Press, 2008
[3] D. Delbourgo, On the divisibility of Selmer into the improved p-adic L-function, in preparation
[4] Kummer theory for big Galois representations, Math. Proc. Cambridge Philos. Soc., Volume 142 (2007), pp. 205-217
[5] p-adic L-functions and p-adic periods of modular forms, Invent. Math., Volume 111 (1993), pp. 401-447
[6] Galois representations into attached to ordinary cusp forms, Invent. Math., Volume 85 (1986), pp. 545-613
[7] Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup. (4), Volume 19 (1986), pp. 231-273
[8] A p-adic measure attached to the zeta-functions associated with two elliptic modular forms I, Invent. Math., Volume 79 (1985), pp. 159-195
[9] On the parity of ranks of Selmer groups, Asian J. Math., Volume 4 (2000) no. 2, pp. 437-497
Cited by Sources:
Comments - Policy