Comptes Rendus
Number Theory/Algebraic Geometry
P-adic weight pairings on pro-Jacobians
Comptes Rendus. Mathématique, Volume 346 (2008) no. 15-16, pp. 819-824.

Let E denote an elliptic curve defined over the rational numbers. We outline a method of proving the statement

L(E,1)0implies both#E(Q)<and#Eord<
using properties of p-adic modular forms, i.e. no Iwasawa theory whatsoever. The proof employs a version of Kato's zeta-elements with Λ-adic coefficients.

Soit E une courbe elliptique définie sur le corps des nombres rationnels. Nous proposons une méthode pour démontrer l'énoncé

L(E,1)0implique#E(Q)<et#Eord<
en utilisant des formes modulaires p-adiques, c'est-à-dire sans la théorie d'Iwasawa. La démonstration utilise une version des éléments-zêta à coefficients Λ-adiques.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.06.005

Daniel Delbourgo 1

1 School of Mathematical Sciences, Monash University, Melbourne, Victoria 3800, Australia
@article{CRMATH_2008__346_15-16_819_0,
     author = {Daniel Delbourgo},
     title = {\protect\emph{P}-adic weight pairings on {pro-Jacobians}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {819--824},
     publisher = {Elsevier},
     volume = {346},
     number = {15-16},
     year = {2008},
     doi = {10.1016/j.crma.2008.06.005},
     language = {en},
}
TY  - JOUR
AU  - Daniel Delbourgo
TI  - P-adic weight pairings on pro-Jacobians
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 819
EP  - 824
VL  - 346
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2008.06.005
LA  - en
ID  - CRMATH_2008__346_15-16_819_0
ER  - 
%0 Journal Article
%A Daniel Delbourgo
%T P-adic weight pairings on pro-Jacobians
%J Comptes Rendus. Mathématique
%D 2008
%P 819-824
%V 346
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2008.06.005
%G en
%F CRMATH_2008__346_15-16_819_0
Daniel Delbourgo. P-adic weight pairings on pro-Jacobians. Comptes Rendus. Mathématique, Volume 346 (2008) no. 15-16, pp. 819-824. doi : 10.1016/j.crma.2008.06.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.06.005/

[1] D. Delbourgo Λ-adic Euler characteristics of elliptic curves, Documenta Math., Volume volume in honour of J.H. Coates' 60th birthday (2006), pp. 301-323

[2] D. Delbourgo Elliptic Curves and Big Galois Representations, London Mathematical Society Lecture Note Series, vol. 356, Cambridge University Press, 2008

[3] D. Delbourgo, On the divisibility of Selmer into the improved p-adic L-function, in preparation

[4] D. Delbourgo; P. Smith Kummer theory for big Galois representations, Math. Proc. Cambridge Philos. Soc., Volume 142 (2007), pp. 205-217

[5] R. Greenberg; G. Stevens p-adic L-functions and p-adic periods of modular forms, Invent. Math., Volume 111 (1993), pp. 401-447

[6] H. Hida Galois representations into GL2(ZpX) attached to ordinary cusp forms, Invent. Math., Volume 85 (1986), pp. 545-613

[7] H. Hida Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup. (4), Volume 19 (1986), pp. 231-273

[8] H. Hida A p-adic measure attached to the zeta-functions associated with two elliptic modular forms I, Invent. Math., Volume 79 (1985), pp. 159-195

[9] J. Nekovář; A. Plater On the parity of ranks of Selmer groups, Asian J. Math., Volume 4 (2000) no. 2, pp. 437-497

Cited by Sources:

Comments - Policy