[Sur la substitution triplexe – propriétés combinatoires]
If a substitution τ over a three-letter alphabet has a positively linear complexity, that is,
Si une substitution τ sur un alphabet de trois lettres a une complexité positivement linéaire, c'est-à-dire
Accepté le :
Publié le :
Bo Tan 1 ; Zhi-Xiong Wen 1 ; Yiping Zhang 2
@article{CRMATH_2008__346_15-16_813_0, author = {Bo Tan and Zhi-Xiong Wen and Yiping Zhang}, title = {On the triplex substitution {\textendash} combinatorial properties}, journal = {Comptes Rendus. Math\'ematique}, pages = {813--818}, publisher = {Elsevier}, volume = {346}, number = {15-16}, year = {2008}, doi = {10.1016/j.crma.2008.06.013}, language = {en}, }
Bo Tan; Zhi-Xiong Wen; Yiping Zhang. On the triplex substitution – combinatorial properties. Comptes Rendus. Mathématique, Volume 346 (2008) no. 15-16, pp. 813-818. doi : 10.1016/j.crma.2008.06.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.06.013/
[1] P. Alessandri, Classification et représentation des suites de complexité
[2] Automates finis en théorie des nombres, Exposition. Math., Volume 5 (1987), pp. 239-266
[3] Pisot substitutions and Rauzy fractals, Marne-la-Vallée, 2000 (Bull. Belg. Math. Soc. Simon Stevin), Volume 8 (2001), pp. 181-207
[4] Représentation géométrique de suites de complexité
[5] Special factors of sequences with linear subword complexity, Developments in Language Theory II (DLT'95), Magdeburg, Allemagne, World Sci., 1996, pp. 25-34
[6] Uniform tag sequences, Math. System Theory, Volume 6 (1972), pp. 164-192
[7] Combinatorics on Words, Encyclopedia of Mathematics and its Applications, vol. 17, Addison-Wesley, 1983
[8] Combinatorial Group Theory, Spring-Verlag, 1977
[9] Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Dover Publications Inc., 1976
[10] Symbolic dynamics II: Sturmian trajectories, Amer. J. Math., Volume 62 (1940), pp. 1-42
[11] Reconnaissabilité des substitutions et complexité des suites automatiques, Bull. Soc. Math. France, Volume 124 (1996), pp. 329-346
[12] Substitutions in dynamics, arithmetics and combinatorics (V. Berthé; S. Ferenczi; C. Mauduit; A. Siegel, eds.), Lecture Notes in Mathematics, vol. 1794, Springer, 2002
[13] Sequences with subword complexity 2n, J. Number Theory, Volume 46 (1994), pp. 196-213
[14] Fibonacci morphisms and Sturmian words, Theoret. Comput. Sci., Volume 88 (1991), pp. 365-384
[15] The structure of invertible substitutions on a three-letter alphabet, Adv. Appl. Math., Volume 32 (2004), pp. 736-753
[16] Local isomorphisms of invertible substitutions, C. R. Acad. Sci. Paris Sér. I, Volume 318 (1994), pp. 299-304
[17] Some remarks on invertible substitutions on three letter alphabet, Chinese Sci. Bull., Volume 44 (1999), pp. 1755-1760
- On the triplex substitution – Rauzy fractal, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 346 (2008) no. 17-18, pp. 925-930 | DOI:10.1016/j.crma.2008.06.014 | Zbl:1213.68481
Cité par 1 document. Sources : zbMATH
⁎ Research supported by NSFC No. 10501035, 10631040, 10571140 and 10671150.
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier