A new fractional time technique for solving incompressible flows with variable density is proposed. The main feature of the method is that, as opposed to other known algorithms, the pressure is computed by solving a Poisson equation, which greatly reduces the computational cost. The method is proved to be stable and is numerically illustrated.
Nous proposons une famille d'algorithmes à pas fractionnaire basés sur une équation de Poisson pour l'approximation des fluides incompressibles à densité variable. On démontre que la méthode est stable.
Accepted:
Published online:
Jean-Luc Guermond 1; Abner Salgado 1
@article{CRMATH_2008__346_15-16_913_0, author = {Jean-Luc Guermond and Abner Salgado}, title = {A fractional step method based on a pressure {Poisson} equation for incompressible flows with variable density}, journal = {Comptes Rendus. Math\'ematique}, pages = {913--918}, publisher = {Elsevier}, volume = {346}, number = {15-16}, year = {2008}, doi = {10.1016/j.crma.2008.06.006}, language = {en}, }
TY - JOUR AU - Jean-Luc Guermond AU - Abner Salgado TI - A fractional step method based on a pressure Poisson equation for incompressible flows with variable density JO - Comptes Rendus. Mathématique PY - 2008 SP - 913 EP - 918 VL - 346 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2008.06.006 LA - en ID - CRMATH_2008__346_15-16_913_0 ER -
%0 Journal Article %A Jean-Luc Guermond %A Abner Salgado %T A fractional step method based on a pressure Poisson equation for incompressible flows with variable density %J Comptes Rendus. Mathématique %D 2008 %P 913-918 %V 346 %N 15-16 %I Elsevier %R 10.1016/j.crma.2008.06.006 %G en %F CRMATH_2008__346_15-16_913_0
Jean-Luc Guermond; Abner Salgado. A fractional step method based on a pressure Poisson equation for incompressible flows with variable density. Comptes Rendus. Mathématique, Volume 346 (2008) no. 15-16, pp. 913-918. doi : 10.1016/j.crma.2008.06.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.06.006/
[1] A conservative adaptive projection method for the variable density incompressible Navier–Stokes equations, J. Comput. Phys., Volume 142 (1998) no. 1, pp. 1-46
[2] A second-order projection method for variable- density flows, J. Comput. Phys., Volume 101 (1992), pp. 334-348
[3] Numerical solution of the Navier–Stokes equations, Math. Comp., Volume 22 (1968), pp. 745-762
[4] Some practical implementations of projection methods for Navier–Stokes equations, M2AN Math. Model. Numer. Anal., Volume 30 (1996) no. 5, pp. 637-667
[5] Entropy-based nonlinear viscosity for Fourier approximations of conservation laws, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 346 (2008) no. 13–14, pp. 801-806
[6] Calculation of incompressible viscous flows by an unconditionally stable projection FEM, J. Comput. Phys., Volume 132 (1997) no. 1, pp. 12-33
[7] A projection FEM for variable density incompressible flows, J. Comput. Phys., Volume 165 (2000) no. 1, pp. 167-188
[8] On the error estimates for the rotational pressure-correction projection methods, Math. Comp., Volume 73 (2004) no. 248, pp. 1719-1737 (electronic)
[9] Gauge–Uzawa methods for incompressible flows with variable density, J. Comput. Phys., Volume 221 (2007) no. 1, pp. 181-197
[10] On error estimates of projection methods for the Navier–Stokes equations: first-order schemes, SIAM J. Numer. Anal., Volume 29 (1992), pp. 57-77
[11] Sur l'approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires ii, Arch. Rat. Mech. Anal., Volume 33 (1969), pp. 377-385
[12] An approximate projection scheme for incompressible flow using spectral elements, Int. J. Numer. Methods Fluids, Volume 22 (1996), pp. 673-688
Cited by Sources:
Comments - Policy