Comptes Rendus
Optimal Control
Finite-time partial stabilizability of chained systems
[Stabilisation partielle en temps fini des systèmes chaînés]
Comptes Rendus. Mathématique, Volume 346 (2008) no. 17-18, pp. 975-980.

The Note deals with partial stabilization in finite-time of a class of nonlinear chained systems. It is well known that the chain of integrators of length n is not asymptotic stabilizable by continuous stationary feedback laws. This follows from the Brockett necessary condition for stabilizability. To overcome this limitation, we construct feedback laws that stabilize in finite-time the (n1) first components of this chain of integrators while the last component converges. This special stabilization is obtained by continuous feedback laws and smooth outside the origin.

On considère des systèmes chaînés qui peuvent modéliser différents systèmes d'origine mécanique ou biologique. On sait depuis Brockett que cette classe de systèmes, qui est contrôlable, n'est pas stabilisable par des feedbacks statiques et continus. Pour contourner le problème, nous proposons l'approche de la stabilisation partielle en temps fini. Nous construisons dans ce travail des feedbacks permettant d'annuler en temps fini les (n1) premières composantes tout en assurant la convergence de la dernière composante. Les feedbacks obtenus sont continus et réguliers en dehors de zéro.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2008.07.014

Chaker Jammazi 1

1 Laboratoire d'ingénierie mathématique, École polytechnique de Tunisie, B.P. 743, La Marsa 2078, Tunis, Tunisia
@article{CRMATH_2008__346_17-18_975_0,
     author = {Chaker Jammazi},
     title = {Finite-time partial stabilizability of chained systems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {975--980},
     publisher = {Elsevier},
     volume = {346},
     number = {17-18},
     year = {2008},
     doi = {10.1016/j.crma.2008.07.014},
     language = {en},
}
TY  - JOUR
AU  - Chaker Jammazi
TI  - Finite-time partial stabilizability of chained systems
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 975
EP  - 980
VL  - 346
IS  - 17-18
PB  - Elsevier
DO  - 10.1016/j.crma.2008.07.014
LA  - en
ID  - CRMATH_2008__346_17-18_975_0
ER  - 
%0 Journal Article
%A Chaker Jammazi
%T Finite-time partial stabilizability of chained systems
%J Comptes Rendus. Mathématique
%D 2008
%P 975-980
%V 346
%N 17-18
%I Elsevier
%R 10.1016/j.crma.2008.07.014
%G en
%F CRMATH_2008__346_17-18_975_0
Chaker Jammazi. Finite-time partial stabilizability of chained systems. Comptes Rendus. Mathématique, Volume 346 (2008) no. 17-18, pp. 975-980. doi : 10.1016/j.crma.2008.07.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.07.014/

[1] S. Bhat; D. Bernstein Continuous finite-time stabilization of the translational and rotational double integrators, IEEE Trans. Automatic Control, Volume 43 (1998) no. 5, pp. 678-682

[2] R.W. Brockett Asymptotic stability and feedback stabilization, Differential Geometric Control Theory, Progr. Math., vol. 27, 1983, pp. 181-191

[3] L.G. Bushnell; D.M. Tilbury; S.S. Sastry Steering three-input nonholonomic systems: the fire truck example, Int. J. Robotics Res., Volume 14 (1995) no. 4, pp. 366-381

[4] F.M. Ceragioli Some remarks on stabilization by means of discontinuous feedbacks, Systems Control Lett., Volume 45 (2002) no. 4, pp. 271-281

[5] J.-M. Coron Global asymptotic stabilization for controllable systems without drift, Math. Control Signals Systems, Volume 5 (1992), pp. 295-312

[6] J.-M. Coron Stabilization in finite time of locally controllable systems by means of continuous time-varying feedback laws, SIAM J. Control Optim., Volume 33 (1995) no. 3, pp. 804-833

[7] J.-M. Coron Control and Nonlinearity, Mathematical Surveys and Monographs, vol. 136, 2007

[8] J.-M. Coron, B. d'Andréa Novel, Smooth stabilizing time-varying control laws for a class of nonlinear systems. Applications to mobile robots, in: IFAC Nonlinear Control Systems Design, 1992, pp. 413–418

[9] J.-M. Coron, J.-B. Pomet, A remark on the design of time-varying stabilizing feedback laws for controllable systems without drift, in: M. Fliess (Ed.), IFAC Nonlinear Control Systems Design, 1992, pp. 397–401

[10] J.-M. Coron; L. Rosier A relation between continuous time-varying and discontinuous feedback stabilization, J. Math. Systems Estimation and Control, Volume 4 (1994), pp. 67-84

[11] X. Huang; W. Lin; B. Yang Global finite-time stabilization of a class of uncertain nonlinear systems, Automatica, Volume 41 (2005), pp. 881-888

[12] R.T. M'Closkey; R.M. Murray Exponential stabilization of driftless nonlinear control systems using homogeneous feedback, IEEE Trans. Automatic Control, Volume 42 (1997), pp. 614-628

[13] C. Samson Velocity and torque feedback control of a nonholonomic cart, Advanced Robot Control, Proceeding of International Workshop on Nonlinear and Adaptive Control, Lecture Notes in Control and Information Sciences, vol. 162, Springer-Verlag, 1991, pp. 125-151

[14] C. Samson Control of chained systems: Application to path following and time-varying point-stabilization of mobile robots, IEEE Trans. Automatic Control, Volume 40 (1995) no. 1, pp. 64-77

[15] E.D. Sontag Mathematical Control Theory: Deterministic Finite Dimensional Systems, Applied Mathematics, vol. 6, Springer-Verlag, New York, 1990

[16] E.D. Sontag, H.J. Sussmann, Remarks on continuous feedback, in: IEEE CDC, Albuquerque, 1980, pp. 916–921

[17] H.J. Sussmann Subanalytic sets and feedback control, J. Differential Equations, Volume 31 (1979) no. 1, pp. 31-52

[18] V.I. Vorotnikov Partial Stability and Control, Birkhäuser, 1998

  • Chaker Jammazi; Ghada Bouamaied; Mohamed Boutayeb On the logarithmic stability estimates of non-autonomous systems: applications to control systems, Qualitative Theory of Dynamical Systems, Volume 23 (2024) no. 4, p. 32 (Id/No 186) | DOI:10.1007/s12346-024-01040-w | Zbl:1543.93311
  • Sarra Samaali Tracking control of chained systems: application to nonholonomic unicycle mobile robots, Control and inverse problems. The 2022 spring workshop in Monastir, Tunisia, May 9–11, 2022, Cham: Birkhäuser, 2023, pp. 223-239 | DOI:10.1007/978-3-031-35675-9_12 | Zbl:1544.93627
  • Karima Saidi; Chaker Jammazi; Mohamed Boutayeb, 2022 10th International Conference on Systems and Control (ICSC) (2022), p. 334 | DOI:10.1109/icsc57768.2022.9993825
  • Chaker Jammazi; Maâli Zaghdoudi; Mohamed Boutayeb On the global polynomial stabilization of nonlinear dynamical systems, Nonlinear Analysis. Real World Applications, Volume 46 (2019), pp. 29-42 | DOI:10.1016/j.nonrwa.2018.07.020 | Zbl:1408.93098
  • Chaker Jammazi Some results on finite-time stabilizability: application to triangular control systems, IMA Journal of Mathematical Control and Information, Volume 35 (2018) no. 3, p. 877 | DOI:10.1093/imamci/dnw076
  • Andrea L'afflitto Differential games, finite-time partial-state stabilisation of nonlinear dynamical systems, and optimal robust control, International Journal of Control, Volume 90 (2017) no. 9, pp. 1861-1878 | DOI:10.1080/00207179.2016.1226518 | Zbl:1372.49050
  • Chaker Jammazi; Azgal Abichou Controllability of linearized systems implies local finite-time stabilizability: applications to finite-time attitude control, IMA Journal of Mathematical Control and Information (2016), p. dnw047 | DOI:10.1093/imamci/dnw047
  • Nawel Khelil; Martin J.-D. Otis Finite-time stabilization of homogeneous non-Lipschitz systems, Mathematics, Volume 4 (2016) no. 4, p. 14 (Id/No 58) | DOI:10.3390/math4040058 | Zbl:1364.93642
  • Mehdi Golestani; Iman Mohammadzaman; Mohammad Javad Yazdanpanah Robust finite-time stabilization of uncertain nonlinear systems based on partial stability, Nonlinear Dynamics, Volume 85 (2016) no. 1, pp. 87-96 | DOI:10.1007/s11071-016-2669-5 | Zbl:1349.93336
  • Wassim M. Haddad; Andrea L'Afflitto Finite-time partial stability and stabilization, and optimal feedback control, Journal of the Franklin Institute, Volume 352 (2015) no. 6, pp. 2329-2357 | DOI:10.1016/j.jfranklin.2015.03.022 | Zbl:1395.93478
  • Chaker Jammazi, 2014 European Control Conference (ECC) (2014), p. 1422 | DOI:10.1109/ecc.2014.6862525
  • Chaoyan Wu; Yanjun Shen, 2014 IEEE International Conference on Information and Automation (ICIA) (2014), p. 554 | DOI:10.1109/icinfa.2014.6932716
  • Chaker Jammazi Continuous and Discontinuous Homogeneous Feedbacks Finite-Time Partially Stabilizing Controllable Multichained Systems, SIAM Journal on Control and Optimization, Volume 52 (2014) no. 1, p. 520 | DOI:10.1137/110856393
  • Chaker Jammazi; Maâli Zaghdoudi On the rational stability of autonomous dynamical systems. Applications to control chained systems, Applied Mathematics and Computation, Volume 219 (2013) no. 20, pp. 10158-10171 | DOI:10.1016/j.amc.2013.03.096 | Zbl:1292.93102
  • M. Ouzahra Partial stabilisation of semilinear systems using bounded controls, International Journal of Control, Volume 86 (2013) no. 12, pp. 2253-2262 | DOI:10.1080/00207179.2013.811290 | Zbl:1311.93073
  • Chaker Jammazi A discussion on the Hölder and robust finite-time partial stabilizability of Brockett's integrator, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 18 (2012) no. 2, pp. 360-382 | DOI:10.1051/cocv/2010101 | Zbl:1246.93090

Cité par 16 documents. Sources : Crossref, zbMATH

Commentaires - Politique