[Espaces
L'inégalité de Hausdorff–Young est bien connue pour la transformée de Fourier dans
The Hausdorff–Young inequality is well known for the Fourier transform in
Accepté le :
Publié le :
Patricia Boivin 1
@article{CRMATH_2008__346_17-18_969_0, author = {Patricia Boivin}, title = {$ {L}^{p}$ spaces of the von {Neumann} algebra of a measured groupoid}, journal = {Comptes Rendus. Math\'ematique}, pages = {969--974}, publisher = {Elsevier}, volume = {346}, number = {17-18}, year = {2008}, doi = {10.1016/j.crma.2008.07.020}, language = {en}, }
Patricia Boivin. $ {L}^{p}$ spaces of the von Neumann algebra of a measured groupoid. Comptes Rendus. Mathématique, Volume 346 (2008) no. 17-18, pp. 969-974. doi : 10.1016/j.crma.2008.07.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.07.020/
[1] The spaces
[2] On the spatial theory of von Neumann algebras, J. Funct. Anal., Volume 35 (1980), pp. 153-164
[3] L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France, Volume 92 (1964) no. 2, pp. 181-236
[4]
[5] Haar measure for measure groupoids, Trans. Amer. Math. Soc., Volume 242 (1978)
[6] Les espaces
[7] Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, New York, 1976
[8] Applications of the complex interpolation method to a von Neumann algebra: Non-commutative
[9]
[10] On the Hausdorff–Young theorem for integral operators, Pacific J. Math., Volume 68 (1977), pp. 241-253
[11] Tomita's Theory of Modular Hilbert Algebras and its Applications, Lecture Notes in Math., vol. 128, Springer, 1970
[12] Theory of Operator Algebras T3, E.M.S., vol. 125, Springer, 2003
[13] M. Terp,
[14] Interpolation spaces between a von Neumann algebra and its predual, J. Operator Theory, Volume 8 (1982), pp. 327-360
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier