In this Note we suggest a direct approach to study local minimizers of one-dimensional variational problems.
Dans cette Note nous suggérons une approche directe pour étudier les minimiseurs locaux de problèmes variationnels monodimensionnels.
Accepted:
Published online:
Mikhail A. Sychev 1
@article{CRMATH_2008__346_21-22_1213_0, author = {Mikhail A. Sychev}, title = {Local minimizers of one-dimensional variational problems and obstacle problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {1213--1218}, publisher = {Elsevier}, volume = {346}, number = {21-22}, year = {2008}, doi = {10.1016/j.crma.2008.07.023}, language = {en}, }
Mikhail A. Sychev. Local minimizers of one-dimensional variational problems and obstacle problems. Comptes Rendus. Mathématique, Volume 346 (2008) no. 21-22, pp. 1213-1218. doi : 10.1016/j.crma.2008.07.023. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.07.023/
[1] One-dimensional variational problems whose minimizers do not satisfy the Euler–Lagrange equation, Arch. Rational Mech. Anal., Volume 90 (1985), pp. 325-388
[2] versus local minimizers, C. R. Acad. Sci. Paris Ser. I Math., Volume 317 (1993), pp. 465-472
[3] One-dimensional Variational Problems. An Introduction, Oxford University Press, 1998
[4] Remarks on necessary conditions for minimizers of one-dimensional variational problems, Nonlinear Anal., Volume 48 (2002), pp. 979-993
[5] A condition on the value function both necessary and sufficient for full regularity of minimizers of one-dimensional variational problems, Trans. Amer. Math. Soc., Volume 350 (1998), pp. 119-133
[6] On the question of regularity of the solutions of variational problems, Russian Acad. Sci. Sb. Math., Volume 75 (1993), pp. 535-556
[7] Examples of classically unsolvable regular scalar variational problems satisfying standard growth conditions, Siberian Math. J., Volume 37 (1996), pp. 1212-1227
[8] Sufficiency theorems for local minimizers of the multiple integrals of the calculus of variations, Proc. Roy. Soc. Edinburgh Sect. A, Volume 131 (2001), pp. 155-184
[9] Strong versus weak local minimizers for the perturbed Dirichlet functional, Calc. Var., Volume 15 (2002), pp. 215-235
[10] A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, vol. 8, Interscience Publishers, New York–London, 1960
Cited by Sources:
⁎ This work was supported by RFBR (project 06-08-00386) and by SB RAS (project 1.6).
Comments - Policy