A monic polynomial in of degree n over a finite field of odd characteristic is the sum of two monic irreducibles in of degrees n and , provided q is larger than an explicitly given bound in terms of n.
Un polynôme unitaire de degré n à coefficients dans un corps fini de caractéristique différente de 2 s'écrit comme une somme , où sont des polynômes unitaires irréductibles de degrés n et , dès que q est plus grand qu'une borne explicite dépendant uniquement de n.
Accepted:
Published online:
Andreas O. Bender 1
@article{CRMATH_2008__346_17-18_931_0, author = {Andreas O. Bender}, title = {Decompositions into sums of two irreducibles in $ {\mathbf{F}}_{q}[t]$}, journal = {Comptes Rendus. Math\'ematique}, pages = {931--934}, publisher = {Elsevier}, volume = {346}, number = {17-18}, year = {2008}, doi = {10.1016/j.crma.2008.07.025}, language = {en}, }
Andreas O. Bender. Decompositions into sums of two irreducibles in $ {\mathbf{F}}_{q}[t]$. Comptes Rendus. Mathématique, Volume 346 (2008) no. 17-18, pp. 931-934. doi : 10.1016/j.crma.2008.07.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.07.025/
[1] A.O. Bender, Representing an element in as the sum of two irreducibles in , submitted for publication
[2] A potential analogue of Schinzel's hypothesis for polynomials with coefficients in , Int. Math. Res. Not., Volume 36 (2005), pp. 2237-2248 (also available from) | arXiv
[3] Additive Number Theory of Polynomials Over a Finite Field, Oxford University Press, New York, NY, 1991
[4] Commutative Algebra With a View Toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, NY, 1995
[5] Über Riemann'sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann., Volume 39 (1891), pp. 1-61 (and Math. Werke, Band 1/XXI, Birkhäuser, Basel, 1932)
Cited by Sources:
Comments - Policy