Comptes Rendus
Partial Differential Equations
Global existence of solutions to a singular parabolic/Hamilton–Jacobi coupled system with Dirichlet conditions
Comptes Rendus. Mathématique, Volume 346 (2008) no. 17-18, pp. 945-950.

We study the existence of (distribution/viscosity) solutions of a singular parabolic/Hamilton–Jacobi coupled system. Our motivation stems from the study of the dynamics of dislocation densities in a crystal of finite size. The method of the proof consists in considering a parabolic regularization of the system, and then passing to the limit after obtaining some uniform bounds using in particular an entropy estimate for the densities.

Nous étudions l'existence de solutions mixtes (distribution/viscosité) pour un système couplé parabolique/Hamilton–Jacobi posé sur un interval. Notre motivation vient de l'étude de la dynamique de densités de dislocations dans un cristal de taille finie. L'idée de la preuve consiste à considérer une régularisation parabolique appropriée, et ensuite à passer à la limite en utilisant en particulier une estimation entropique pour les densités.

Received:
Published online:
DOI: 10.1016/j.crma.2008.07.031

Hassan Ibrahim 1; Mustapha Jazar 2; Régis Monneau 1

1 CERMICS, École des ponts, Université Paris-Est, 6 & 8, avenue B. Pascal, 77455 Marne-la-Vallée cedex 2, France
2 LaMA-Liban, Lebanese University, P.O. Box 826, Tripoli, Lebanon
@article{CRMATH_2008__346_17-18_945_0,
     author = {Hassan Ibrahim and Mustapha Jazar and R\'egis Monneau},
     title = {Global existence of solutions to a singular {parabolic/Hamilton{\textendash}Jacobi} coupled system with {Dirichlet} conditions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {945--950},
     publisher = {Elsevier},
     volume = {346},
     number = {17-18},
     year = {2008},
     doi = {10.1016/j.crma.2008.07.031},
     language = {en},
}
TY  - JOUR
AU  - Hassan Ibrahim
AU  - Mustapha Jazar
AU  - Régis Monneau
TI  - Global existence of solutions to a singular parabolic/Hamilton–Jacobi coupled system with Dirichlet conditions
JO  - Comptes Rendus. Mathématique
PY  - 2008
SP  - 945
EP  - 950
VL  - 346
IS  - 17-18
PB  - Elsevier
DO  - 10.1016/j.crma.2008.07.031
LA  - en
ID  - CRMATH_2008__346_17-18_945_0
ER  - 
%0 Journal Article
%A Hassan Ibrahim
%A Mustapha Jazar
%A Régis Monneau
%T Global existence of solutions to a singular parabolic/Hamilton–Jacobi coupled system with Dirichlet conditions
%J Comptes Rendus. Mathématique
%D 2008
%P 945-950
%V 346
%N 17-18
%I Elsevier
%R 10.1016/j.crma.2008.07.031
%G en
%F CRMATH_2008__346_17-18_945_0
Hassan Ibrahim; Mustapha Jazar; Régis Monneau. Global existence of solutions to a singular parabolic/Hamilton–Jacobi coupled system with Dirichlet conditions. Comptes Rendus. Mathématique, Volume 346 (2008) no. 17-18, pp. 945-950. doi : 10.1016/j.crma.2008.07.031. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.07.031/

[1] G. Barles Solutions de viscosité des équations de Hamilton–Jacobi, Mathématiques & Applications (Berlin), Mathematics & Applications, vol. 17, Springer-Verlag, Paris, 1994

[2] H. Brézis; T. Gallouët Nonlinear Schrödinger evolution equations, Nonlinear Anal., Volume 4 (1980), pp. 677-681

[3] H. Brézis; S. Wainger A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, Volume 5 (1980), pp. 773-789

[4] I. Groma; F.F. Czikor; M. Zaiser Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics, Acta Mater., Volume 51 (2003), pp. 1271-1281

[5] J.R. Hirth; L. Lothe Theory of Dislocations, Kreiger Publishing Company, Florida 32950, 1982

[6] H. Ibrahim, M. Jazar, R. Monneau, Dynamics of dislocation densities in a bounded channel. Part I: smooth solutions to a singular coupled parabolic system, preprint, hal-00281487

[7] H. Ibrahim, M. Jazar, R. Monneau, Dynamics of dislocation densities in a bounded channel. Part II: existence of weak solutions to a singular Hamilton–Jacobi/parabolic strongly coupled system, preprint, hal-00281859

[8] H. Kozono; Y. Taniuchi Limiting case of the Sobolev inequality in BMO, with application to the Euler equations, Commun. Math. Phys., Volume 214 (2000), pp. 191-200

[9] O.A. Ladyženskaja; V.A. Solonnikov; N.N. Ural'ceva Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23, American Mathematical Society, Providence, RI, 1967 (Translated from the Russian by S. Smith)

Cited by Sources:

Comments - Policy