We study the existence of (distribution/viscosity) solutions of a singular parabolic/Hamilton–Jacobi coupled system. Our motivation stems from the study of the dynamics of dislocation densities in a crystal of finite size. The method of the proof consists in considering a parabolic regularization of the system, and then passing to the limit after obtaining some uniform bounds using in particular an entropy estimate for the densities.
Nous étudions l'existence de solutions mixtes (distribution/viscosité) pour un système couplé parabolique/Hamilton–Jacobi posé sur un interval. Notre motivation vient de l'étude de la dynamique de densités de dislocations dans un cristal de taille finie. L'idée de la preuve consiste à considérer une régularisation parabolique appropriée, et ensuite à passer à la limite en utilisant en particulier une estimation entropique pour les densités.
Published online:
Hassan Ibrahim 1; Mustapha Jazar 2; Régis Monneau 1
@article{CRMATH_2008__346_17-18_945_0, author = {Hassan Ibrahim and Mustapha Jazar and R\'egis Monneau}, title = {Global existence of solutions to a singular {parabolic/Hamilton{\textendash}Jacobi} coupled system with {Dirichlet} conditions}, journal = {Comptes Rendus. Math\'ematique}, pages = {945--950}, publisher = {Elsevier}, volume = {346}, number = {17-18}, year = {2008}, doi = {10.1016/j.crma.2008.07.031}, language = {en}, }
TY - JOUR AU - Hassan Ibrahim AU - Mustapha Jazar AU - Régis Monneau TI - Global existence of solutions to a singular parabolic/Hamilton–Jacobi coupled system with Dirichlet conditions JO - Comptes Rendus. Mathématique PY - 2008 SP - 945 EP - 950 VL - 346 IS - 17-18 PB - Elsevier DO - 10.1016/j.crma.2008.07.031 LA - en ID - CRMATH_2008__346_17-18_945_0 ER -
%0 Journal Article %A Hassan Ibrahim %A Mustapha Jazar %A Régis Monneau %T Global existence of solutions to a singular parabolic/Hamilton–Jacobi coupled system with Dirichlet conditions %J Comptes Rendus. Mathématique %D 2008 %P 945-950 %V 346 %N 17-18 %I Elsevier %R 10.1016/j.crma.2008.07.031 %G en %F CRMATH_2008__346_17-18_945_0
Hassan Ibrahim; Mustapha Jazar; Régis Monneau. Global existence of solutions to a singular parabolic/Hamilton–Jacobi coupled system with Dirichlet conditions. Comptes Rendus. Mathématique, Volume 346 (2008) no. 17-18, pp. 945-950. doi : 10.1016/j.crma.2008.07.031. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.07.031/
[1] Solutions de viscosité des équations de Hamilton–Jacobi, Mathématiques & Applications (Berlin), Mathematics & Applications, vol. 17, Springer-Verlag, Paris, 1994
[2] Nonlinear Schrödinger evolution equations, Nonlinear Anal., Volume 4 (1980), pp. 677-681
[3] A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, Volume 5 (1980), pp. 773-789
[4] Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics, Acta Mater., Volume 51 (2003), pp. 1271-1281
[5] Theory of Dislocations, Kreiger Publishing Company, Florida 32950, 1982
[6] H. Ibrahim, M. Jazar, R. Monneau, Dynamics of dislocation densities in a bounded channel. Part I: smooth solutions to a singular coupled parabolic system, preprint, hal-00281487
[7] H. Ibrahim, M. Jazar, R. Monneau, Dynamics of dislocation densities in a bounded channel. Part II: existence of weak solutions to a singular Hamilton–Jacobi/parabolic strongly coupled system, preprint, hal-00281859
[8] Limiting case of the Sobolev inequality in BMO, with application to the Euler equations, Commun. Math. Phys., Volume 214 (2000), pp. 191-200
[9] Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23, American Mathematical Society, Providence, RI, 1967 (Translated from the Russian by S. Smith)
Cited by Sources:
Comments - Policy