[Théorème de congruence pour les surfaces minimales en
Nous présentons un théorème de congruence pour les surfaces minimales en
We provide a congruence theorem for minimal surfaces in
Accepté le :
Publié le :
Rodrigo Ristow Montes 1
@article{CRMATH_2008__346_23-24_1275_0, author = {Rodrigo Ristow Montes}, title = {A congruence theorem for minimal surfaces in $ {S}^{5}$ with constant contact angle}, journal = {Comptes Rendus. Math\'ematique}, pages = {1275--1278}, publisher = {Elsevier}, volume = {346}, number = {23-24}, year = {2008}, doi = {10.1016/j.crma.2008.10.013}, language = {en}, }
TY - JOUR AU - Rodrigo Ristow Montes TI - A congruence theorem for minimal surfaces in $ {S}^{5}$ with constant contact angle JO - Comptes Rendus. Mathématique PY - 2008 SP - 1275 EP - 1278 VL - 346 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2008.10.013 LA - en ID - CRMATH_2008__346_23-24_1275_0 ER -
Rodrigo Ristow Montes. A congruence theorem for minimal surfaces in $ {S}^{5}$ with constant contact angle. Comptes Rendus. Mathématique, Volume 346 (2008) no. 23-24, pp. 1275-1278. doi : 10.1016/j.crma.2008.10.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.10.013/
[1] Sympletic Geometry, Progress in Mathematics, vol. 124, Springer-Verlag, Berlin–New York, 1992
[2] Minimal surfaces by moving frames, Amer. J. Math., Volume 105 (1983), pp. 59-83
[3] On a parametrization of minimal immersions
[4] Contact angle for immersed surfaces in
Cité par Sources :
Commentaires - Politique