[Une estimation de la vorticité de l'équation de Navier–Stokes]
Supposons que soit une solution de l'équation de Navier–Stokes sur le torus de la dimension 3, et soit la vorticité, nous démontrons dans cette Note que l'application
Let be a strong solution of the Navier–Stokes equation on 3-dimensional torus , and be the vorticity. In this Note we show that
Accepté le :
Publié le :
Zhongmin Qian 1
@article{CRMATH_2009__347_1-2_89_0, author = {Zhongmin Qian}, title = {An estimate for the vorticity of the {Navier{\textendash}Stokes} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {89--92}, publisher = {Elsevier}, volume = {347}, number = {1-2}, year = {2009}, doi = {10.1016/j.crma.2008.11.007}, language = {en}, }
Zhongmin Qian. An estimate for the vorticity of the Navier–Stokes equation. Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 89-92. doi : 10.1016/j.crma.2008.11.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.11.007/
[1] Navier–Stokes equations and area of interfaces, Commun. Math. Phys., Volume 129 (1990), pp. 241-266
[2] On the Navier–Stokes initial value problem. I, Arch. Rational Mech. Anal., Volume 16 (1964), pp. 269-315
[3] Viscous incompressible fluids: mathematical theory, Encyclopaedia of Mathematical Physics, 2006, pp. 369-379
[4] Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Mach. Nachr., Volume 4 (1950–1951), pp. 213-231
[5] Initial-Boundary Value Problems and the Navier–Stokes Equations, Classics in Applied Mathematics, vol. 47, SIAM, 2004
[6] The Mathematical Theory of Viscous Incompressible Flow, Gordan and Breach, New York, 1969 (Translation from the Russian)
[7] Sur le mouvement d'un liquide visquex emplissent l'espace, Acta Math., Volume 63 (1934), pp. 193-248
[8] Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002
[9] The initial value problem for the Navier–Stokes equations (R.T. Langer, ed.), Nonlinear Problems, Proceedings of a Symposium, Madison, WI, University of Wisconsin, Madison, WI, 1963, pp. 69-98
[10] Navier–Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, American Mathematical Society, 2001
Cité par Sources :
Commentaires - Politique