Let be a strong solution of the Navier–Stokes equation on 3-dimensional torus , and be the vorticity. In this Note we show that
Supposons que soit une solution de l'équation de Navier–Stokes sur le torus de la dimension 3, et soit la vorticité, nous démontrons dans cette Note que l'application
Accepted:
Published online:
Zhongmin Qian 1
@article{CRMATH_2009__347_1-2_89_0, author = {Zhongmin Qian}, title = {An estimate for the vorticity of the {Navier{\textendash}Stokes} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {89--92}, publisher = {Elsevier}, volume = {347}, number = {1-2}, year = {2009}, doi = {10.1016/j.crma.2008.11.007}, language = {en}, }
Zhongmin Qian. An estimate for the vorticity of the Navier–Stokes equation. Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 89-92. doi : 10.1016/j.crma.2008.11.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.11.007/
[1] Navier–Stokes equations and area of interfaces, Commun. Math. Phys., Volume 129 (1990), pp. 241-266
[2] On the Navier–Stokes initial value problem. I, Arch. Rational Mech. Anal., Volume 16 (1964), pp. 269-315
[3] Viscous incompressible fluids: mathematical theory, Encyclopaedia of Mathematical Physics, 2006, pp. 369-379
[4] Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Mach. Nachr., Volume 4 (1950–1951), pp. 213-231
[5] Initial-Boundary Value Problems and the Navier–Stokes Equations, Classics in Applied Mathematics, vol. 47, SIAM, 2004
[6] The Mathematical Theory of Viscous Incompressible Flow, Gordan and Breach, New York, 1969 (Translation from the Russian)
[7] Sur le mouvement d'un liquide visquex emplissent l'espace, Acta Math., Volume 63 (1934), pp. 193-248
[8] Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002
[9] The initial value problem for the Navier–Stokes equations (R.T. Langer, ed.), Nonlinear Problems, Proceedings of a Symposium, Madison, WI, University of Wisconsin, Madison, WI, 1963, pp. 69-98
[10] Navier–Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, American Mathematical Society, 2001
Cited by Sources:
Comments - Policy