Dans cette Note, nous étudions des germes de champs de vecteurs holomorphes qui sont des perturbations convenables de champs de vecteurs quasi-homogènes au voisinage de l'origine de , point fixe des champs considerés. En particulier, nous définissions une condition « diophantienne » sur le champ quasihomogène initial S qui assure que si une telle perturbation de S est formellement conjuguée à S alors elle l'est holomorphiquement.
In this Note, we study germs of holomorphic vector fields which are suitable perturbations of a quasihomogeneous vector field in a neighborhood of the origin of , fixed point of the vector fields. In particular, we define a “diophantine condition” on the quasihomogeneous initial part S which ensures that if such a perturbation of S is formally conjugate to S then it is also holomorphically conjugate to it.
Accepté le :
Publié le :
Eric Lombardi 1 ; Laurent Stolovitch 2
@article{CRMATH_2009__347_3-4_143_0, author = {Eric Lombardi and Laurent Stolovitch}, title = {Forme normale de perturbation de champs de vecteurs quasi-homog\`enes}, journal = {Comptes Rendus. Math\'ematique}, pages = {143--146}, publisher = {Elsevier}, volume = {347}, number = {3-4}, year = {2009}, doi = {10.1016/j.crma.2008.11.013}, language = {fr}, }
Eric Lombardi; Laurent Stolovitch. Forme normale de perturbation de champs de vecteurs quasi-homogènes. Comptes Rendus. Mathématique, Volume 347 (2009) no. 3-4, pp. 143-146. doi : 10.1016/j.crma.2008.11.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.11.013/
[1] Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir, 1980
[2] Polynomial normal forms with exponentially small remainder for analytic vector fields, J. Differential Equations, Volume 212 (2005) no. 1, pp. 1-61
[3] Linear grading function and further reduction of normal forms, J. Differential Equations, Volume 132 (1996) no. 2, pp. 293-318
[4] An algebraic theorem of E. Fischer, and the holomorphic Goursat problem, Bull. London Math. Soc., Volume 21 (1989) no. 6, pp. 513-537
[5] Sur un théorème de Dulac, Ann. Inst. Fourier, Volume 44 (1994) no. 5, pp. 1397-1433
[6] Invariant normal forms of formal series, Funct. Anal. Appl., Volume 13 (1979) no. 1, pp. 46-47
Cité par Sources :
Commentaires - Politique