[Géométries de drapeaux généralisées et variétés associées aux algèbres de Lie graduées en dimension quelconque]
L'objet de cette Note est de définir la géométrie de drapeaux généralisée d'une algèbre de Lie graduée, qui correspond à la géométrie projective généralisée dans le cas des 3-graduations, puis de construire une structure de variété différentielle sur cette géométrie. Ce résultat généralise au cas des -graduations un résultat déjà connu pour les 3-graduations.
The object of this Note is to define the generalized flag geometry of a graded Lie algebra which corresponds to the generalized projective geometry in the case of 3-gradings. Then we construct a structure of manifold on this generalized flag geometry. This result generalizes a result known for 3-graded Lie algebras to the more general case of -graded Lie algebras.
Accepté le :
Publié le :
Julien Chenal 1
@article{CRMATH_2009__347_1-2_21_0, author = {Julien Chenal}, title = {Generalized flag geometries and manifolds associated to short $ \mathbb{Z}$-graded {Lie} algebras in arbitrary dimension}, journal = {Comptes Rendus. Math\'ematique}, pages = {21--25}, publisher = {Elsevier}, volume = {347}, number = {1-2}, year = {2009}, doi = {10.1016/j.crma.2008.12.001}, language = {en}, }
TY - JOUR AU - Julien Chenal TI - Generalized flag geometries and manifolds associated to short $ \mathbb{Z}$-graded Lie algebras in arbitrary dimension JO - Comptes Rendus. Mathématique PY - 2009 SP - 21 EP - 25 VL - 347 IS - 1-2 PB - Elsevier DO - 10.1016/j.crma.2008.12.001 LA - en ID - CRMATH_2009__347_1-2_21_0 ER -
Julien Chenal. Generalized flag geometries and manifolds associated to short $ \mathbb{Z}$-graded Lie algebras in arbitrary dimension. Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 21-25. doi : 10.1016/j.crma.2008.12.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.12.001/
[1] Differential geometry, Lie groups and symmetric spaces over general base fields and rings, Mem. Amer. Math. Soc., Volume 192 (2008) no. 900, p. ix+202
[2] Projective completions of Jordan pairs. Part I: The generalized projective geometry of a Lie algebra, J. Algebra, Volume 277 (2004), pp. 474-519
[3] Projective completions of Jordan pairs. Part II: Manifold structure and symmetric spaces, Geom. Dedicata, Volume 112 (2005), pp. 73-113
[4] Graded Lie algebras and generalized Jordan triple systems, Nagoya Math. J., Volume 112 (1988), pp. 81-115
[5] Jordan Pairs, Lecture Notes in Math., vol. 460, Springer, Berlin, 1975
[6] Elementary groups and stability for Jordan pairs, K-Theory, Volume 9 (1995), pp. 77-116
[7] Symmetric Banach Manifolds and Jordan C*-algebras, North-Holland Math. Stud., vol. 104, 1985
Cité par Sources :
Commentaires - Politique