The object of this Note is to define the generalized flag geometry of a graded Lie algebra which corresponds to the generalized projective geometry in the case of 3-gradings. Then we construct a structure of manifold on this generalized flag geometry. This result generalizes a result known for 3-graded Lie algebras to the more general case of -graded Lie algebras.
L'objet de cette Note est de définir la géométrie de drapeaux généralisée d'une algèbre de Lie graduée, qui correspond à la géométrie projective généralisée dans le cas des 3-graduations, puis de construire une structure de variété différentielle sur cette géométrie. Ce résultat généralise au cas des -graduations un résultat déjà connu pour les 3-graduations.
Accepted:
Published online:
Julien Chenal 1
@article{CRMATH_2009__347_1-2_21_0,
author = {Julien Chenal},
title = {Generalized flag geometries and manifolds associated to short $ \mathbb{Z}$-graded {Lie} algebras in arbitrary dimension},
journal = {Comptes Rendus. Math\'ematique},
pages = {21--25},
year = {2009},
publisher = {Elsevier},
volume = {347},
number = {1-2},
doi = {10.1016/j.crma.2008.12.001},
language = {en},
}
TY - JOUR
AU - Julien Chenal
TI - Generalized flag geometries and manifolds associated to short $ \mathbb{Z}$-graded Lie algebras in arbitrary dimension
JO - Comptes Rendus. Mathématique
PY - 2009
SP - 21
EP - 25
VL - 347
IS - 1-2
PB - Elsevier
DO - 10.1016/j.crma.2008.12.001
LA - en
ID - CRMATH_2009__347_1-2_21_0
ER -
Julien Chenal. Generalized flag geometries and manifolds associated to short $ \mathbb{Z}$-graded Lie algebras in arbitrary dimension. Comptes Rendus. Mathématique, Volume 347 (2009) no. 1-2, pp. 21-25. doi: 10.1016/j.crma.2008.12.001
[1] Differential geometry, Lie groups and symmetric spaces over general base fields and rings, Mem. Amer. Math. Soc., Volume 192 (2008) no. 900, p. ix+202
[2] Projective completions of Jordan pairs. Part I: The generalized projective geometry of a Lie algebra, J. Algebra, Volume 277 (2004), pp. 474-519
[3] Projective completions of Jordan pairs. Part II: Manifold structure and symmetric spaces, Geom. Dedicata, Volume 112 (2005), pp. 73-113
[4] Graded Lie algebras and generalized Jordan triple systems, Nagoya Math. J., Volume 112 (1988), pp. 81-115
[5] Jordan Pairs, Lecture Notes in Math., vol. 460, Springer, Berlin, 1975
[6] Elementary groups and stability for Jordan pairs, K-Theory, Volume 9 (1995), pp. 77-116
[7] Symmetric Banach Manifolds and Jordan C*-algebras, North-Holland Math. Stud., vol. 104, 1985
Cited by Sources:
Comments - Policy
