Comptes Rendus
Topology/Geometry
Nonsingular Ricci flow on a noncompact manifold in dimension three
Comptes Rendus. Mathématique, Volume 347 (2009) no. 3-4, pp. 185-190.

We consider the Ricci flow tg=2Ric on the 3-dimensional complete noncompact manifold (M,g(0)) with nonnegative curvature operator, i.e., Rm0, and |Rm(p)|0, as d(o,p). We prove that the Ricci flow on such a manifold is nonsingular in any finite time.

Nous considérons le flot de Ricci tg=2Ric sur la variété tridimensionnelle complète de courbure non négatif, c'est-à-dire Rm0 et |Rm(p)|0 si d(o,p). Nous démontrons que le flot de Ricci sur une telle variété est non singular pour tout temps fini.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.12.002

Li Ma 1; Anqiang Zhu 1

1 Department of Mathematical Sciences, Tsinghua University, Peking 100084, PR China
@article{CRMATH_2009__347_3-4_185_0,
     author = {Li Ma and Anqiang Zhu},
     title = {Nonsingular {Ricci} flow on a noncompact manifold in dimension three},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {185--190},
     publisher = {Elsevier},
     volume = {347},
     number = {3-4},
     year = {2009},
     doi = {10.1016/j.crma.2008.12.002},
     language = {en},
}
TY  - JOUR
AU  - Li Ma
AU  - Anqiang Zhu
TI  - Nonsingular Ricci flow on a noncompact manifold in dimension three
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 185
EP  - 190
VL  - 347
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2008.12.002
LA  - en
ID  - CRMATH_2009__347_3-4_185_0
ER  - 
%0 Journal Article
%A Li Ma
%A Anqiang Zhu
%T Nonsingular Ricci flow on a noncompact manifold in dimension three
%J Comptes Rendus. Mathématique
%D 2009
%P 185-190
%V 347
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2008.12.002
%G en
%F CRMATH_2009__347_3-4_185_0
Li Ma; Anqiang Zhu. Nonsingular Ricci flow on a noncompact manifold in dimension three. Comptes Rendus. Mathématique, Volume 347 (2009) no. 3-4, pp. 185-190. doi : 10.1016/j.crma.2008.12.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.12.002/

[1] A. Chau; L.F. Tam; C. Yu Pseudolocality for the Ricci flow and applications | arXiv

[2] J. Cheeger; D. Ebin Comparison Theorems in Riemannian Geometry, North-Holland, Amsterdam, 1975

[3] B. Chow; D. Knopf The Ricci Flow: An Introduction, Mathematical Surveys and Monographs, Amer. Math. Soc., Providence, RI, 2004

[4] X. Dai; L. Ma Mass under the Ricci flow, Comm. Math. Phys., Volume 274 (2007) no. 1, pp. 65-80

[5] D. Gromoll; W. Meyer On complete open manifolds of positive curvature, Ann. of Math., Volume 90 (1969) no. 1, pp. 75-90

[6] R.S. Hamilton The formation of singularities in the Ricci flow, Cambridge, MA, 1995, International Press, Cambridge, MA (1995), pp. 7-136

[7] R.S. Hamilton Three-manifolds with positive Ricci curvature, J. Differential Geometry, Volume 17 (1982) no. 2, pp. 255-306

[8] R.S. Hamilton A compactness property for solutions of the Ricci flow, Amer. J. Math., Volume 117 (1995) no. 3, pp. 545-572

[9] B. Kleiner; J. Lott Notes on Perelman's paper | arXiv

[10] J. Morgan; G. Tian Ricci Flow and the Poincaré conjecture | arXiv

[11] T.A. Oliynyk; E. Woolgar Asymptotically flat Ricci flows, 2008 | arXiv

[12] G. Perelman The entropy for Ricci flow and its geometry applications, 2002 | arXiv

[13] G. Perelman Ricci flow with surgery on three-manifolds, 2003 | arXiv

[14] G. Perelman Finite time extinction time for the solutions to the Ricci flow on certain three-manifold, 2003 | arXiv

[15] W.X. Shi Ricci deformation of the metric on complete noncompact Riemannian manifolds, J. Differential Geometry, Volume 30 (1989), pp. 303-394

[16] R. Ye On the l function and the reduced volume of Perelman, 2004 http://www.math.ucsb.edu/yer/reduced.pdf (Available at)

Cited by Sources:

Comments - Policy