Comptes Rendus
Algebra/Homological Algebra
Poisson (co)homology of truncated polynomial algebras in two variables
Comptes Rendus. Mathématique, Volume 347 (2009) no. 3-4, pp. 133-138.

We study the Poisson (co)homology of the algebra of truncated polynomials in two variables viewed as the semi-classical limit of a quantum complete intersection studied by Bergh and Erdmann. We show in particular that the Poisson cohomology ring of such a Poisson algebra is isomorphic to the Hochschild cohomology ring of the corresponding quantum complete intersection.

Nous étudions la cohomologie de Poisson d'une algèbre de polynômes tronqués en deux indéterminées vue comme la limite semi-classique des intersections complètes quantiques étudiées par Bergh et Erdmann. Nous montrons en particulier que l'anneau de cohomologie de Poisson de cette algèbre de Poisson est isomorphe à l'anneau de cohomologie de Hochschild de l'intersection complète quantique associée.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2008.12.005

Stéphane Launois 1; Lionel Richard 2

1 Institute of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7NF, UK
2 School of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, UK
@article{CRMATH_2009__347_3-4_133_0,
     author = {St\'ephane Launois and Lionel Richard},
     title = {Poisson (co)homology of truncated polynomial algebras in two variables},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {133--138},
     publisher = {Elsevier},
     volume = {347},
     number = {3-4},
     year = {2009},
     doi = {10.1016/j.crma.2008.12.005},
     language = {en},
}
TY  - JOUR
AU  - Stéphane Launois
AU  - Lionel Richard
TI  - Poisson (co)homology of truncated polynomial algebras in two variables
JO  - Comptes Rendus. Mathématique
PY  - 2009
SP  - 133
EP  - 138
VL  - 347
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crma.2008.12.005
LA  - en
ID  - CRMATH_2009__347_3-4_133_0
ER  - 
%0 Journal Article
%A Stéphane Launois
%A Lionel Richard
%T Poisson (co)homology of truncated polynomial algebras in two variables
%J Comptes Rendus. Mathématique
%D 2009
%P 133-138
%V 347
%N 3-4
%I Elsevier
%R 10.1016/j.crma.2008.12.005
%G en
%F CRMATH_2009__347_3-4_133_0
Stéphane Launois; Lionel Richard. Poisson (co)homology of truncated polynomial algebras in two variables. Comptes Rendus. Mathématique, Volume 347 (2009) no. 3-4, pp. 133-138. doi : 10.1016/j.crma.2008.12.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.12.005/

[1] J. Alev; M. Farinati; T. Lambre; A. Solotar Homologie des invariants d'une algèbre de Weyl sous l'action d'un groupe fini, J. Algebra, Volume 232 (2000), pp. 564-577

[2] J. Alev; L. Foissy Le groupe des traces de Poisson de la variété quotient h+h/W en rang 2, Comm. Algebra, Volume 37 (2009), pp. 368-388

[3] J. Alev; T. Lambre Comparaison de l'homologie de Hochschild et de l'homologie de Poisson pour une déformation des surfaces de Klein, Tashkent, 1997 (Y. Khakimdjanov; M. Goze; S. Ayupov, eds.), Kluwer Acad. Publ., Dordrecht (1998), pp. 25-38

[4] P.A. Bergh On the Hochschild (co)homology of quantum exterior algebras, Comm. Algebra, Volume 25 (2007), pp. 3440-3450

[5] P.A. Bergh; K. Erdmann Homology and cohomology of quantum complete intersections, Algebra Number Theory, Volume 2 (2008), pp. 501-522

[6] P.A. Bergh; S. Oppermann The representation dimension of quantum complete intersections, J. Algebra, Volume 320 (2008), pp. 354-368

[7] J.-L. Brylinski A differential complex for Poisson manifolds, J. Diff. Geom., Volume 28 (1988), pp. 115-132

[8] R.-O. Buchweitz; E. Green; D. Madsen; O. Solberg Finite Hochschild cohomology without finite global dimension, Math. Res. Lett., Volume 12 (2005), pp. 805-816

[9] C. Kassel L'homologie cyclique des algèbres enveloppantes, Invent. Math., Volume 91 (1988), pp. 221-251

[10] M. Kontsevich Deformation quantization of Poisson manifolds, Lett. Math. Phys., Volume 66 (2003), pp. 157-216

[11] Y. Kosmann-Schwarzbach Poisson manifolds, Lie algebroids, modular classes: a survey, SIGMA, Volume 4 (2008) (paper 005)

[12] S. Launois; L. Richard Twisted Poincaré duality for some quadratic Poisson algebras, Lett. Math. Phys., Volume 79 (2007), pp. 161-174

[13] A. Lichnerowicz Les variétés de Poisson et leurs algèbres de Lie associées, J. Diff. Geom., Volume 12 (1977), pp. 253-300

[14] A. Pichereau Poisson (co)homology and isolated singularities, J. Algebra, Volume 299 (2006), pp. 747-777

Cited by Sources:

Comments - Politique